Bài 3 trang 64 SGK Toán 11 tập 2 – Chân trời sáng tạoCho hình chóp (S.ABCD) có đáy là hình vuông cạnh bằng (asqrt 2 ), có các cạnh bên đều bằng (2a).🃏Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Đề bài Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh bằng \(a\sqrt 2 \), có các cạnh bên đều bằng \(2a\). a) Tính góc giữa \(SC\) và \(AB\). b) Tính diện tích hình chiếu vuông góc của tam giác \(SAB\) trên mặt phẳng \(\left( {ABCD} \right)\).Phương pháp giải - Xem chi tiết
a) Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):
Bước 1: Lấy một điểm \(O\) bất kì. Bước 2:🦹 Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\). Bước 3:ℱ Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\). b) Sử dụng phép chiếu vuông góc.Lời giải chi tiết Mà ABCD là hình vuông nên O là trung điểm của mỗi đường chéo. \(\begin{array}{l} \Rightarrow AO = BO = \frac{{AC}}{2} = a\\ \Rightarrow {S_{OAB}} = \frac{1}{2}AO.BO = \frac{1}{2}a.a = \frac{1}{2}{a^2}\end{array}\)Vậy diện tích hình chiếu vuông góc của tam giác SAB trên mặt phẳng (ABCD) là \(\frac{1}{2}{a^2}\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |