ftw bet

Bài 2.16 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức

Viết năm số hạng đầu của mỗi dãy số (left( {{u_n}} right)) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức số hạng tổng quát của nó dưới dạng ({u_n} = {u_1}.{q^{n - 1}})

𝔍Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo

Đề bài

Viết năm số hạng đầu của mỗi dãy số \(\left( {{u_n}} \right)\) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội qღ và viết công thức số hạng tổng quát của nó dưới dạng \({u_n} = {u_1}.{q^{n - 1}}\)

a) \({u_n} = 5n\)          b) \({u_n} = {5^n}\)    c) \({u_1} = 1,\;{u_n} = n.{u_{n - 1}}\),         d) \({u_1} = 1,\;{u_n} = 5.{u_{n - 1}}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Để chứng minh dãy số (\({u_n})\) gồm các số khác 0 là một cấp số nhân, hãy chứng minh tỉ số \(\frac{{{u_n}}}{{{u_{n - 1}}}}\) không đổi. Từ đó, xác định được công bội và số hạng tổng quát \({u_n}\).

Lời giải chi tiết

a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\). có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).
Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|