Bài 2.1 trang 49 SGK Toán 11 tập 1 - Cùng khám pháViết sáu số hạng đầu tiên của các dãy số (un) có số hạng tổng quát cho bởi:
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Viết sáu số hạng đầu tiên của các dãy số (un) có số hạng tổng quát cho bởi: a) \({u_n} = \frac{{n\sqrt n }}{{n + 1}};\) b) \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n};\) c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\)Phương pháp giải - Xem chi tiết
Thay n = 1, 2, ..., 6 vào các công thức.
Lời giải chi tiết a) \({u_1} = \frac{{1\sqrt 1 }}{{1 + 1}} = \frac{1}{2};{u_2} = \frac{{2\sqrt 2 }}{{2 + 2}} = \frac{{\sqrt 2 }}{2};{u_3} = \frac{{3\sqrt 3 }}{{3 + 3}} = \frac{{\sqrt 3 }}{2};{u_4} = \frac{{4\sqrt 4 }}{{4 + 4}} = 1;{u_5} = \frac{{5\sqrt 5 }}{{5 + 5}} = \frac{{\sqrt 5 }}{2};{u_6} = \frac{{6\sqrt 6 }}{{6 + 6}} = \frac{{\sqrt 6 }}{2}\)b)\({u_1} = \frac{{{{\left( { - 1} \right)}^1}}}{1} = - 1;{u_2} = \frac{{{{\left( { - 1} \right)}^2}}}{2} = \frac{1}{2};{u_3} = \frac{{{{\left( { - 1} \right)}^3}}}{3} = - \frac{1}{3};{u_4} = \frac{{{{\left( { - 1} \right)}^4}}}{4} = \frac{1}{4};{u_5} = \frac{{{{\left( { - 1} \right)}^5}}}{5} = - \frac{1}{5};{u_6} = \frac{{{{\left( { - 1} \right)}^6}}}{6} = \frac{1}{6}\)c)\(\begin{array}{l}{u_1} = {\left( {1 + \frac{1}{1}} \right)^1} = 2;{u_2} = {\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4};{u_3} = {\left( {1 + \frac{1}{3}} \right)^3} = \frac{{64}}{{27}};\\{u_4} = {\left( {1 + \frac{1}{4}} \right)^4} = \frac{{625}}{{256}};{u_5} = {\left( {1 + \frac{1}{5}} \right)^5} = {\left( {\frac{6}{5}} \right)^5};{u_6} = {\left( {1 + \frac{1}{6}} \right)^6} = {\left( {\frac{7}{6}} \right)^6}\end{array}\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |