Lý thuyết Làm tròn số thập phân và ước lượng kết quả Toán 6 Chân trời sáng tạoTải về Lý thuyết Làm tròn số thập phân và ước lượng kết quả Toán 6 Chân trời sáng tạo ngắn gọn, đầy đủ, dễ hiểuTổng hợp đề thi học kì 2 lớp 6 tất cả các môn - Chân trời sá🌜ng tạo Toán - Văn - Anh - Khoa học tự nhiên...Quảng cáo
I. Làm tròn số nguyên
Để làm tròn một số nguyên (có nhiều chữ số) đến một hàng nào đó, ta làm như sau:
- Nếu chữ số đứng ngay bên phải hàng làm tròn nhỏ hơn $5$ thì ta thay lần lượt các chữ số đứng bên phải hàng làm tròn bởi chữ số $0$.
- Nếu chữ số đứng ngay bên phải hàng làm tròn lớn hơn hoặc bằng 5 thì ta thay lần lượt các chữ số đứng bên phải hàng làm tròn bởi chữ số $0$ rồi cộng thêm $1$ vào chữ số của hàng làm tròn.
Chú ý: Kí hiệu “ ” đọc là “gần bằng” hoặc “xấp xỉ”. Ví dụ: Làm tròn số $125\,\,356$ đến hàng nghìnDo chữ số hàng trăm là $3$ nên: $125\,\,356 \approx 125\,\,000$II. Làm tròn số thập phânĐể làm tròn một số thập phân dương đến một hàng nào đấy (gọi là hàng làm tròn), ta làm như sau:
- Đối với chữ số hàng làm tròn:
Ví dụ: Làm tròn số $24,037$ đến hàng phần mười (đến chữ số thập phân thứ nhất).III. Ước lượng kết quảTa có thể sử dụng quy ước làm tròn số để ước lượng kết quả các phép tính. Nhờ đó có thể dễ dàng phát hiện ra những đáp số không hợp lí.Ví dụ: Ước lượng kết quả các phép tính sau:a) $\left( { - 11,032} \right).\left( { - 24,3} \right) \approx 11.24 = 264$b) $81.49 \approx 80.50 = 4\,000$
Quảng cáo
Tham Gia Group Dành Cho Lớp 6 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |