ftw bet

Lý thuyết Giá trị lớn nhất, giá trị nhỏ nhất của hàm số Toán 12 Chân trời sáng tạo

1. Định nghĩa Khái niệm GTLN, GTNN của hàm số

Tổng hợp đề thi học kꦐì 2 lớp 12 tất cả các môn - ꦜChân trời sáng tạo

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Quảng cáo

1. Định nghĩa

Khái niệm GTLN, GTNN của hàm số

 
Cho hàm số y = f(x) xác định trên tập D.
  • Số M là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x) \( \le \) M với mọi \(x \in D\) và tồn tại \({x_0} \in D\) sao cho \(f({x_0})\) = M.
Kí hiệu M = \(\mathop {\max }\limits_{x \in D} f(x)\) hoặc M = \(\mathop {\max }\limits_D f(x)\)
  • Số m là giá trị nhỏ nhất của hàm số y = f(x) trên tập D nếu f(x) \( \ge \) m với mọi \(x \in D\) và tồn tại \({x_0} \in D\) sao cho \(f({x_0})\) = m.
Kí hiệu m = \(\mathop {\min }\limits_{x \in D} f(x)\) hoặc m = \(\mathop {\min }\limits_D f(x)\)

2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn

Các bước tìm GTLN và GTNN của hàm số f(x) trên đoạn \(\left[ {a;b} \right]\):
  1. Tìm các điểm \({x_1},{x_2},...,{x_n} \in (a;b)\), tại đó f’(x) = 0 hoặc không tồn tại
  2. Tính \(f({x_1}),f({x_2}),...,f({x_n}),f(a)\) và \(f(b)\)
  3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Ta có:
M = \(\mathop {\max }\limits_{\left[ {a;b} \right]} f(x)\); m = \(\mathop {\min }\limits_{\left[ {a;b} \right]} f(x)\)

Ví dụ: Tì🌠m GTLN và GTNN của hàm số \(y = {x^4} - 4{x^2} + 3\) trên đoạn \(\left[ {0;4} \right]\)

Ta có: \(y' = 4{x^3} - 8x = 4x({x^2} - 2);y' = 0 \Leftrightarrow x = 0\) hoặc \(x = \sqrt 2 \) (vì \(x \in \left[ {0;4} \right]\))y(0) = 3; y(4) = 195; y(\(\sqrt 2 \)) = -1Do đó: \(\mathop {\max }\limits_{\left[ {0;4} \right]} y = y(4) = 195\); \(\mathop {\min }\limits_{\left[ {0;4} \right]} y = y(\sqrt 2 ) =  - 1\)

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|