Giải mục II trang 27, 28, 29 SGK Vật Lí 10 - Kết nối tri thứcMột người đi xe máy đi từ ngã tư (Hình 5.1) với tốc độ trung bình 30 km/h theo hướng Bắc. Sau 3 phút người đó đến vị trí nào trên hình. Theo em, biểu thức nào sau đây xác định giá trị vận tốc. Tại sao. Bạn A đi học từ nhà đến trường theo lộ trình ABC (Hình 5.2). Biết bạn A đi đoạn đường AB = 400 m hết 6 phút, đoạn đường BC = 300 m hết 4 phút. Một con kiến bò quanh miệng của một cái chén được 1 vòng hết 3 giây. Bán kính của miệng chén là 3 cm. Hãy xác định vận tốc của hành khách đối với mặt đường🌸Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Câu hỏi 1 Giải câu hỏi 1 trang 27 SGK Vật Lí 10 Một người đi xe máy đi từ ngã tư (Hình 5.1) với tốc độ trung bình 30 km/h theo hướng Bắc. Sau 3 phút người đó đến vị trí nào trên hình?Phương pháp giải: Sử dụng công thức: \(v = \frac{s}{t}\)Lời giải chi tiết: Đổi: 3 phút = 0,05 giờ Quãng đường người đó đi được sau 3 phút là: Ta có: \(v = \frac{s}{t} \Rightarrow s = v.t = 30.0,05 = 1,5\left( {km} \right)\) Vậy sau 3 phút, người đó đến vị trí E trên hình.Câu hỏi 2 Giải câu hỏi 2 trang 27 SGK Vật Lí 10 Theo em, biểu thức nào sau đây xác định giá trị vận tốc? Tại sao? a) \(\frac{s}{t}\) b) \(vt\) c) \(\frac{d}{t}\) d) \(d.t\)Lời giải chi tiết: Biểu thức xác định giá trị vận tốc là biểu thức : c) \(\frac{d}{t}\) Vì d là độ dịch chuyển của vật sẽ cho chúng ta biết được độ dịch chuyển của vật trong một đơn vị thời gian xác định.Câu hỏi 3 Giải câu hỏi 3 trang 28 SGK Vật Lí 10 1.﷽ Bạn A đi học từ nhà đến trường theo lộ trình ABC (Hình 5.2). Biết bạn A đi đoạn đường AB = 400 m hết 6 phút, đoạn đường BC = 300 m hết 4 phút. Xác định tốc độ trung bình và vận tốc trung bình của bạn A khi đi từ nhà đến trường. 2.ﷺ Một con kiến bò quanh miệng của một cái chén được 1 vòng hết 3 giây. Bán kính của miệng chén là 3 cm. a) Tính quãng đường đi được và độ dịch chuyển của kiến. b) Tính tốc độ trung bình và vận tốc trung bình của con kiến ra cm/s.Phương pháp giải: 1. - Xác định độ dài quãng đường từ nhà đến trường - Xác định thời gian từ nhà đến trường - Xác định độ dịch chuyển từ nhà đến trường - Sử dụng công thức tính tốc độ trung bình và vận tốc trung bình.2. - Tính độ dài 1 vòng tròn (chu vi hình tròn) - Sử dụng công thức tính tốc độ trung bình và vận tốc trung bình.Lời giải chi tiết: 1. - Độ dài quãng đường từ nhà đến trường là: \(s = AB + BC = 400 + 300 = 700\left( m \right)\) - Thời gian đi từ nhà đến trường là: \(t = 6 + 4 = 10\) (phút) - Tốc độ trung bình của bạn A khi đi từ nhà đến trường là: \(v = \frac{s}{t} = \frac{{700}}{{10}} = 70\left( {m/ph} \right)\) - Độ dịch chuyển của bạn A là: \(d = AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{{400}^2} + {{300}^2}} = 500\left( m \right)\) - Vận tốc trung bình của bạn A khi đi từ nhà đến trường là: \(v = \frac{d}{t} = \frac{{500}}{{6 + 4}} = 50\left( {m/ph} \right)\)2. a) - Quãng đường đi được của con kiến là: \(s = 2\pi r = 2\pi .0,03 = 0,06\pi = 0,1884m = 18,84\left( {cm} \right)\) - Con kiến bò quanh miệng cốc, không đổi chiều chuyển động nên độ dịch chuyển và quãng đường đi được bằng nhau: \(d = s = 18,84\left( {cm} \right)\) b) Tốc độ trung bình của con kiến là: \(v = \frac{s}{t} = \frac{{18,84}}{3} = 6,28\left( {cm/s} \right)\) Do \(d = s\) nên vận tốc trung bình bằng tốc độ trung bình và bằng 6,28 cm/s.Câu hỏi 4 Giải câu hỏi 4 trang 28 SGK Vật Lí 10 1.♐ Hãy xác định vận tốc của hành khách đối với mặt đường nếu người này chuyển động về cuối đoàn tàu với vận tốc có cùng độ lớn 1 m/s. 2.♎ Một người bơi trong bể bơi yên lặng có thể đạt tới vận tốc 1 m/s. Nếu người này bơi xuôi dòng sông có dòng chảy với vận tốc 1 m/s thì có thể đạt vận tốc tối đa là bao nhiêu? 3.🌜 Một canô chạy hết tốc lực trên mặt nước yên lặng có thể đạt 21,5 km/h. Canô này chạy xuôi dòng sông trong 1 giờ rồi quay lại thì phải mất 2 giờ nữa mới về tới vị trí ban đầu. Hãy tính vận tốc chảy của dòng sông. Phương pháp giải: Sử dụng công thức tổng hợp vận tốc.Lời giải chi tiết: 1. Đổi: 36 km/h = 10 m/s Gọi: \({\overrightarrow v _{1,2}}\) là vận tốc của hành khách so với tàu \({\overrightarrow v _{2,3}}\) là vận tốc của tàu so với mặt đường \({\overrightarrow v _{1,3}}\) là vận tốc của hành khách so với mặt đường Suy ra, ta có: \({\overrightarrow v _{1,3}} = {\overrightarrow v _{1,2}} + {\overrightarrow v _{2,3}}\) Do hành khách chuyển động về cuối đoàn tàu, tức là ngược chiều chuyển động của đoàn tàu nên ta có: \({v_{1,3}} = - {v_{1,2}} + {v_{2,3}} = - 1 + 10 = 9\left( {m/s} \right)\) Vậy vận tốc của hành khách đối với mặt đường trong trường hợp này là 9 m/s.2. Gọi: \({\overrightarrow v _{1,2}}\) là vận tốc của người so với nước \({\overrightarrow v _{2,3}}\) là vận tốc của nước so với bờ \({\overrightarrow v _{1,3}}\) là vận tốc của người so với bờ Ta có: \({\overrightarrow v _{1,3}} = {\overrightarrow v _{1,2}} + {\overrightarrow v _{2,3}}\) - Khi người bơi trong bể nước yên lặng, tức \({v_{2,3}} = 0\), ta có: \({v_{1,2}} = {v_{1,3}} = 1\left( {m/s} \right)\) - Khi người này bơi xuôi dòng chảy với vận tốc \({v_{2,3}} = 1\left( {m/s} \right)\), ta có: \({v_{1,3}} = {v_{1,2}} + {v_{2,3}} = 1 + 1 = 2\left( {m/s} \right)\) Vậy nếu người này bơi xuôi dòng sông có dòng chảy với vận tốc 1 m/s thì có thể đạt vận tốc tối đa là 2 m/s.3. Gọi: \({\overrightarrow v _{1,2}}\) là vận tốc của canô so với nước \({\overrightarrow v _{2,3}}\) là vận tốc của nước so với bờ \({\overrightarrow v _{1,3}}\) là vận tốc của canô so với bờ Ta có: \({\overrightarrow v _{1,3}} = {\overrightarrow v _{1,2}} + {\overrightarrow v _{2,3}}\) - Khi canô chạy trên mặt nước yên lặng, tức \({v_{2,3}} = 0\), ta có: \({v_{1,2}} = {v_{1,3}} = 21,5\left( {km/h} \right)\) - Khi canô chạy xuôi dòng sông, ta có: \(v{'_{1,3}} = {v_{1,2}} + {v_{2,3}} = 21,5 + {v_{2,3}}\) \( \Rightarrow {t_1} = \frac{d}{{21,5 + {v_{2,3}}}} \Leftrightarrow 1 = \frac{d}{{21,5 + {v_{2,3}}}} \Leftrightarrow 21,5 = d - {v_{2,3}}\) (1) - Khi canô quay lại, ta có: \(v{'_{1,3}} = {v_{1,2}} - {v_{2,3}} = 21,5 - {v_{2,3}}\) \( \Rightarrow {t_1} = \frac{d}{{21,5 - {v_{2,3}}}} \Leftrightarrow 2 = \frac{d}{{21,5 - {v_{2,3}}}} \Leftrightarrow 43 = d + 2{v_{2,3}}\) (2) - Từ (1) và (2) ta suy ra: \(\left\{ \begin{array}{l}d = 28,67\left( {km} \right)\\{v_{2,3}} = 7,17\left( {km/h} \right)\end{array} \right.\) Vậy vận tốc chảy của dòng sông là 7,17 km/h.Câu hỏi 5 Giải câu hỏi 5 trang 29 SGK Vật Lí 10 1.💖 Một máy bay đang bay theo hướng Bắc với vận tốc 200 m/s thì bị gió từ hướng Tây thổi vào với vận tốc 20 m/s. Xác định vận tốc tổng hợp của máy bay lúc này. 2. Một người lái máy bay thể thao đang tập bay ngang. Khi bay từ A đến B thì vận tốc tổng hợp của máy bay là 15 m/s theo hướng 600🔴 Đông – Bắc và vận tốc của gió là 7,5 m/s theo hướng Bắc. a) Hãy chứng minh rằng khi bay từ A đến B thì người lái phải luôn hướng máy bay về hướng Đông. b) Sau khi bay 5 km từ A đến B, máy bay quay lại theo đường BA với vận tốc tổng hợp 13,5 m/s. Coi thời gian ở lại B là không đáng kể, tính tốc độ trung bình trên cả tuyến đường từ A đến B rồi trở lại A.Phương pháp giải: - Sử dụng lý thuyết tổng hợp hai vận tốc vuông góc với nhau. - Sử dụng công thức tính tốc độ trung bình.Lời giải chi tiết: 1. Gọi: \({\overrightarrow v _{1,2}}\) là vận tốc của máy bay so với gió \({\overrightarrow v _{2,3}}\) là vận tốc của gió so với đường bay \({\overrightarrow v _{1,3}}\) là vận tốc của máy bay so với đường bay Suy ra: Vận tốc tổng hợp của máy bay lúc này là: \({v_{1,3}} = \sqrt {v_{1,2}^2 + v_{2,3}^2} = \sqrt {{{200}^2} + {{20}^2}} = 201\left( {m/s} \right)\)2. a)Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |