ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải mục 2 trang 20,21 SGK Toán 8 tập 1 - Kết nối tri thức

Hãy nhớ lại quy tắc nhân hai đa thức một biến bằng cách thực hiện phép nhân:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ3

Video hướng dẫn giải

Hãy nhớ lại quy tắc nhân hai đa thức một biến bằng cách thực hiện phép nhân: \(\left( {2x + 3} \right).\left( {{x^2} - 5x + 4} \right)\)

Phương pháp giải:

Nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.

Lời giải chi tiết:

\(\begin{array}{l}\left( {2x + 3} \right).\left( {{x^2} - 5x + 4} \right)\\ = 2x.\left( {{x^2} - 5x + 4} \right) + 3.\left( {{x^2} - 5x + 4} \right)\\ = 2x.{x^2} - 2x.5x + 2x.4 + 3{x^2} - 3.5x + 3.4\\ = 2{x^3} - 10{x^2} + 8x + 3{x^2} - 15x + 12\\ = 2{x^3} + \left( { - 10{x^2} + 3{x^2}} \right) + \left( {8x - 15x} \right) + 12\\ = 2{x^3} - 7{x^2} - 7x + 12\end{array}\)

HĐ4

Video hướng dẫn giải

Bằng cách tương tự, hãy làm phép nhân \(\left( {2x + 3y} \right).\left( {{x^2} - 5xy + 4{y^2}} \right)\).

Phương pháp giải:

Nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.

Lời giải chi tiết:

\(\begin{array}{l}\left( {2x + 3y} \right).\left( {{x^2} - 5xy + 4{y^2}} \right)\\ = 2x.\left( {{x^2} - 5xy + 4{y^2}} \right) + 3y.\left( {{x^2} - 5xy + 4{y^2}} \right)\\ = 2x.{x^2} - 2x.5xy + 2x.4{y^2} + 3{x^2}y - 3y.5xy + 3y.4{y^2}\\ = 2{x^3} - 10{x^2}y + 8x{y^2} + 3{x^2}y - 15x{y^2} + 12{y^3}\\ = 2{x^3} + \left( { - 10{x^2}y + 3{x^2}y} \right) + \left( {8x{y^2} - 15x{y^2}} \right) + 12{y^3}\\ = 2{x^3} - 7{x^2}y - 7x{y^2} + 12{y^3}\end{array}\)

Luyện tập 3

Video hướng dẫn giải

Thực hiện phép nhân: a)      \(\left( {2x + y} \right)\left( {4{x^2} - 2xy + {y^2}} \right)\); b)      \(\left( {{x^2}{y^2} - 3} \right)\left( {3 + {x^2}{y^2}} \right)\).

Phương pháp giải:

Nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.

Lời giải chi tiết:

a) \(\begin{array}{l}\left( {2x + y} \right)\left( {4{x^2} - 2xy + {y^2}} \right)\\ = 2x.4{x^2} - 2x.2xy + 2x.{y^2} + y.4{x^2} - y.2xy + y.{y^2}\\ = 8{x^3} - 4{x^2}y + 2x{y^2} + 4{x^2}y - 2x{y^2} + {y^3}\\ = 8{x^3} + \left( { - 4{x^2}y + 4{x^2}y} \right) + \left( {2x{y^2} - 2x{y^2}} \right) + {y^3}\\ = 8{x^3} + {y^3}\end{array}\) b) \(\begin{array}{l}\left( {{x^2}{y^2} - 3} \right)\left( {3 + {x^2}{y^2}} \right)\\ = {x^2}{y^2}.3 + {x^2}{y^2}.{x^2}{y^2} - 3.3 - 3.{x^2}{y^2}\\ = 3{x^2}{y^2} + {x^4}{y^4} - 9 - 3{x^2}{y^2}\\ = {x^4}{y^4} + \left( {3{x^2}{y^2} - 3{x^2}{y^2}} \right) - 9\\ = {x^4}{y^4} - 9\end{array}\)

Thử thách nhỏ

Video hướng dẫn giải

Xét biểu thức đại số với hai biến k và m sau: \(P = \left( {2k - 3} \right)\left( {3m - 2} \right) - \left( {3k - 2} \right)\left( {2m - 3} \right)\) a)      Rút gọn biểu thức P. b)      Chứng minh rằng tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.

Phương pháp giải:

Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.

Lời giải chi tiết:

a) \(\begin{array}{l}P = \left( {2k - 3} \right)\left( {3m - 2} \right) - \left( {3k - 2} \right)\left( {2m - 3} \right)\\ = 2k.3m - 2k.2 - 3.3m + 3.2 - \left( {3k.2m - 3k.3 - 2.2m + 2.3} \right)\\ = 6km - 4k - 9m + 6 - 6km + 9k + 4m - 6\\ = \left( {6km - 6km} \right) + \left( { - 4k + 9k} \right) + \left( { - 9m + 4m} \right) + \left( {6 - 6} \right)\\ = 5k - 5m\end{array}\) b) Ta có: \(P = 5k - 5m = 5.\left( {k - m} \right)\) Vì \(5 \vdots 5\) và k, m nguyên nên P chia hết cho 5.

Quảng cáo

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|🗹{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🦩{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|ꦦ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|ꦏ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|𒊎{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|ღ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|