Giải mục 2 trang 11, 12, 13, 14, 15 SGK Toán 11 tập 1 - Cùng khám pháa) Từ định nghĩa của \(\sin \alpha \)và \(\cos \alpha \), hãy tính \({\sin ^2}\alpha + {\cos ^2}\alpha \). b) Từ định nghĩa của \(\tan \alpha \) và \(\cot \alpha \), hãy tính \(\tan \alpha .\cot \alpha \).
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Hoạt động 3 a) Từ định nghĩa của \(\sin \alpha \)và \(\cos \alpha \), hãy tính \({\sin ^2}\alpha + {\cos ^2}\alpha \). b) Từ định nghĩa của \(\tan \alpha \) và \(\cot \alpha \), hãy tính \(\tan \alpha .\cot \alpha \).Phương pháp giải: Lời giải chi tiết: Luyện tập 4 Cường độ ánh sáng I đi xuyên qua một màn lọc ánh sáng được tính bởi công thức \(I = {I_m} - \frac{{{I_m}}}{{1 + {{\cot }^2}\alpha }}\), trong đó Imꦰ là cường độ ánh sáng đã chiếu lên màn lọc ánh sáng và là góc \(\alpha \) như trong Hình 1.21 (nguồn: ). Chứng minh rằng: \(I = {I_m}{\cos ^2}\alpha \). Phương pháp giải: Áp dụng các hệ thức cơ bản giữa các giá trị lượng giác.Lời giải chi tiết: \(\begin{array}{l}I = {I_m} - \frac{{{I_m}}}{{1 + {{\cot }^2}\alpha }} = {I_m}\left( {1 - \frac{1}{{1 + {{\cot }^2}\alpha }}} \right) = {I_m}.\left( {1 - \frac{1}{{\frac{1}{{{{\sin }^2}\alpha }}}}} \right)\\ = {I_m}.\left( {1 - {{\sin }^2}\alpha } \right) = {I_m}.{\cos ^2}\alpha \end{array}\) Hoạt động 4 a) Dựa vào Hình 1.22, hãy so sánh \(\cos \left( { - \alpha } \right)\) và \(\cos \left( \alpha \right)\); \(\sin \left( { - \alpha } \right)\) và \(\sin \left( \alpha \right)\). b) Từ đó so sánh \(\tan \left( { - \alpha } \right)\) và \(\tan \left( \alpha \right)\); \(\cot \left( { - \alpha } \right)\) và \(\cot \left( \alpha \right)\).Phương pháp giải: a) Quan sát hình vẽ. b) Áp dụng các hệ thức cơ bản giữa các giá trị lượng giác.Lời giải chi tiết: a) Dựa vào Hình 1.22, ta thấy: \(\cos \left( { - \alpha } \right)\) = \(\cos \left( \alpha \right)\) \(\sin \left( { - \alpha } \right) = - \sin \left( \alpha \right)\) b) \(\begin{array}{l}\tan \left( { - \alpha } \right) = \frac{{\sin \left( { - \alpha } \right)}}{{\cos \left( { - \alpha } \right)}} = \frac{{ - \sin \alpha }}{{\cos \alpha }} = - \tan \alpha \\\cot \left( { - \alpha } \right) = \frac{{\cos \left( { - \alpha } \right)}}{{\sin \left( { - \alpha } \right)}} = \frac{{\cos \alpha }}{{ - \sin \alpha }} = - \cot \alpha \end{array}\)Hoạt động 5 a) Dựa vào Hình 1.23, hãy so sánh \(\sin \left( {\pi - \alpha } \right)\) và \(\sin \left( \alpha \right)\); \(\cos \left( {\pi - \alpha } \right)\) và \(\cos \left( \alpha \right)\). b) Từ đó so sánh \(\tan \left( {\pi - \alpha } \right)\) và \(\tan \left( \alpha \right)\); \(\cot \left( {\pi - \alpha } \right)\) và \(\cot \left( \alpha \right)\).Phương pháp giải: a) Quan sát hình vẽ. b) Áp dụng các hệ thức cơ bản giữa các giá trị lượng giác.Lời giải chi tiết: a) Dựa vào Hình 1.23, ta thấy: \(\sin \left( {\pi - \alpha } \right)\) = \(\sin \left( \alpha \right)\) \(\cos \left( {\pi - \alpha } \right) = - \cos \left( \alpha \right)\) b) \(\tan \left( {\pi - \alpha } \right) = \frac{{\sin \left( {\pi - \alpha } \right)}}{{\cos \left( {\pi - \alpha } \right)}} = \frac{{\sin \alpha }}{{ - \cos \alpha }} = - \tan \alpha \) \(\cot \left( {\pi - \alpha } \right) = \frac{1}{{\tan \left( {\pi - \alpha } \right)}} = \frac{1}{{ - \tan \alpha }} = - \cot \alpha \)Hoạt động 6 a) Dựa vào Hình 1.24, hãy so sánh \(\sin \left( {\alpha + \pi } \right)\) và \(\sin \left( \alpha \right)\); \({\rm{cos}}\left( {\alpha + \pi } \right)\) và \(\cos \left( \alpha \right)\). b) Từ đó so sánh \(\tan \left( {\alpha + \pi } \right)\) và \(\tan \left( \alpha \right)\); \(\cot \left( {\alpha + \pi } \right)\) và \(\cot \left( \alpha \right)\).Phương pháp giải: a) Quan sát hình vẽ. b) Áp dụng các hệ thức cơ bản giữa các giá trị lượng giác.Lời giải chi tiết: a) Dựa vào Hình 1.24, ta thấy: \(\sin \left( {\alpha + \pi } \right) = - \sin \alpha \) \({\rm{cos}}\left( {\alpha + \pi } \right) = - \cos \alpha \) b) \(\tan \left( {\alpha + \pi } \right) = \frac{{\sin \left( {\alpha + \pi } \right)}}{{\cos \left( {\alpha + \pi } \right)}} = \frac{{ - \sin \alpha }}{{ - \cos \alpha }} = \tan \alpha \) \(\cot \left( {\alpha + \pi } \right) = \frac{{\cos \left( {\alpha + \pi } \right)}}{{\sin \left( {\alpha + \pi } \right)}} = \frac{{ - \cos \alpha }}{{ - \sin \alpha }} = \cot \alpha \)Hoạt động 7 a) Dựa vào Hình 1.25, hãy so sánh \(\sin \left( {\frac{\pi }{2} - \alpha } \right)\) và \(\cos \left( \alpha \right)\); \({\rm{cos}}\left( {\frac{\pi }{2} - \alpha } \right)\) và \(\sin \left( \alpha \right)\). b) Từ đó so sánh \(\tan \left( {\frac{\pi }{2} - \alpha } \right)\) và \(\cot \left( \alpha \right)\); \(\cot \left( {\frac{\pi }{2} - \alpha } \right)\) và \(\tan \left( \alpha \right)\).Phương pháp giải: a) Quan sát hình vẽ. b) Áp dụng các hệ thức cơ bản giữa các giá trị lượng giác.Lời giải chi tiết: a) Dựa vào Hình 1.25, ta thấy: \(\sin \left( {\frac{\pi }{2} - \alpha } \right)\) = \(\cos \left( \alpha \right)\) \({\rm{cos}}\left( {\frac{\pi }{2} - \alpha } \right)\) = \(\sin \left( \alpha \right)\) b) \(\tan \left( {\frac{\pi }{2} - \alpha } \right) = \frac{{\sin \left( {\frac{\pi }{2} - \alpha } \right)}}{{\cos \left( {\frac{\pi }{2} - \alpha } \right)}} = \frac{{\cos \alpha }}{{\sin \alpha }} = \cot \alpha \) \(\cot \left( {\frac{\pi }{2} - \alpha } \right) = \frac{{\cos \left( {\frac{\pi }{2} - \alpha } \right)}}{{\sin \left( {\frac{\pi }{2} - \alpha } \right)}} = \frac{{\sin \alpha }}{{\cos \alpha }} = \tan \alpha \)Luyện tập 5 Chứng minh giá trị của biểu thức sau không phụ thuộc \(\alpha \): \(B = {\sin ^2}\left( {\alpha + \pi } \right) + {\sin ^2}\left( {\frac{\pi }{2} - \alpha } \right) + \cos \left( { - \alpha } \right) + \cos \left( {\pi - \alpha } \right)\)Phương pháp giải: Áp dụng các hệ thức giữa giá trị lượng giác của các góc lượng giác có liên quan đặc biệt.Lời giải chi tiết: \(\begin{array}{l}B = {\sin ^2}\left( {\alpha + \pi } \right) + {\sin ^2}\left( {\frac{\pi }{2} - \alpha } \right) + \cos \left( { - \alpha } \right) + \cos \left( {\pi - \alpha } \right)\\ \Leftrightarrow B = {\left( { - \sin \alpha } \right)^2} + {\cos ^2}\alpha + \cos \alpha - \cos \alpha \\ \Leftrightarrow B = {\sin ^2}\alpha + {\cos ^2}\alpha \\ \Leftrightarrow B = 1\end{array}\) Vậy B không phụ thuộc \(\alpha \).
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |