Giải bài 8 trang 68 sách bài tập toán 11 - Cánh diềuTính các giới hạn sau:
Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo
Đề bài Tính các giới hạn sau: a) \(\lim \frac{{4n + 2}}{3}\) b) \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}}\) c) \(\lim \frac{{ - 3 + \frac{1}{{n + 1}}}}{{{5^n}}}\) d) \(\lim \left( {6 - \frac{5}{{{4^n}}}} \right)\)Phương pháp giải - Xem chi tiết
Sử dụng tính chất về dãy số có giới hạn vô cực và định lí về giới hạn hữu hạn.
Lời giải chi tiết a) Ta có \(\lim \left( {4n + 2} \right) = + \infty \), \(\lim 3 = 3\) nên \(\lim \frac{{4n + 2}}{3} = + \infty \)b) Ta có \(\lim \frac{2}{n} = 0 \Rightarrow \lim \left( { - 5 + \frac{2}{n}} \right) = - 5\)Mặt khác, \(\lim \left( {3n + 4} \right) = + \infty \). Suy ra \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}} = - \infty \)c) Ta có \(\lim \frac{1}{{n + 1}} = 0 \Rightarrow \lim \left( { - 3 + \frac{1}{{n + 1}}} \right) = - 3\)Mặt khác, \(\lim {5^n} = + \infty \), suy ra \(\lim \frac{{ - 3 + \frac{1}{{n + 1}}}}{{{5^n}}} = 0\)d) Ta có \(\lim {4^n} = + \infty \Rightarrow \lim \frac{5}{{{4^n}}} = 0\).Như vậy \(\lim \left( {6 - \frac{5}{{{4^n}}}} \right) = \lim 6 - \lim \frac{5}{{{4^n}}} = 6 - 0 = 6\).
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |