Giải bài 8 trang 15 sách bài tập toán 12 - Chân trời sáng tạoTính các tích phân sau: a) (intlimits_{ - 1}^2 {left| {{x^2} + x - 2} right|dx} ); b) (intlimits_{ - 1}^1 {left| {{e^x} - 1} right|dx} ).🦩Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Đề bài Tính các tích phân sau: a) \(\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|dx} \); b) \(\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|dx} \).Phương pháp giải - Xem chi tiết
Sử dụng tính chất:
• \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \).
• \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} - \int\limits_a^b {g\left( x \right)dx} \).
Lời giải chi tiết a) \({x^2} + x - 2 = 0 \Leftrightarrow x = 1\) hoặc \({\rm{x}} = - 2\) (loại) Bảng xét dấu trên đoạn \(\left[ { - 1;2} \right]\):
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |