ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài 7.31 trang 38 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hình lăng trụ đứng \(ABC \cdot A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\) và \(AB = AC = AA' = a\).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Cho hình lăng trụ đứng \(ABC \cdot A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\) và \(AB = AC = AA' = a\). Tính theo a khoảng cách: a) Từ điểm \(A\) đến đường thẳng \(B'C'\). b) Giữa hai đường thẳng \(BC\) và \(AB'\).

Phương pháp giải - Xem chi tiết

a)     Tính khoảng cách từ điểm \(A\) đến đường thẳng \(B'C'\). Bước 1: Tìm hình chiếu của điểm trên đường thẳng \(B'C'\). Kẻ \(AH\) vuông góc với \(B'C'\) tại \(H\) thì \(d\left( {A,B'C'} \right) = AH\).

Bước 2: Tính \(AH\)

b) Tính khoảng cách giữa hai đường thẳng \(BC\) và \(AB'\).

Bước 1:  Dựng mặt phẳng qua đường thẳng \(AB'\) và song song với  \(BC\) là \(\left( {AB'C'} \right)\)

Chuyển khoảng cách về chân đường vuông góc \(d\left( {BC,AB'} \right) = d\left( {BC,\left( {AB'C'} \right)} \right) = d\left( {C,\left( {AB'C'} \right)} \right) = d\left( {C,\left( {AB'C'} \right)} \right) = d\left( {A',\left( {AB'C'} \right)} \right).\)

Bước 2:ꦜ Tính \(d\left( {A',\left( {AB'C'} \right)} \right)\)

Lời giải chi tiết

a) Kẻ \(AH\) vuông góc với \(B'C'\) tại \(H\) thì \(d\left( {A,B'C'} \right) = AH\).Ta có: \(AB' = AC' = B'C' = a\sqrt 2 \) nên \(AH = \frac{{a\sqrt 6 }}{2}\).Vậy \(d\left( {A,B'C'} \right) = \frac{{a\sqrt 6 }}{2}\).b) Vì \(BC//\left( {AB'C'} \right)\) nên \(d\left( {BC,AB'} \right) = d\left( {BC,\left( {AB'C'} \right)} \right) = d\left( {C,\left( {AB'C'} \right)} \right).\)

 

Mà \(CA'\) cắt \(AC'\) tại trung điểm của \(CA'\) nên \(d\left( {C,\left( {AB'C'} \right)} \right) = d\left( {A',\left( {AB'C'} \right)} \right)\)Đặt \(d\left( {A',\left( {AB'C'} \right)} \right) = h\) thì \(\frac{1}{{{h^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{A'{B^{{\rm{'}}2}}}} + \frac{1}{{A'{C^{{\rm{'}}2}}}} = \frac{3}{{{a^2}}}\), suy ra \(h = \frac{{a\sqrt 3 }}{3}\).Vậy \(d\left( {BC,AB'} \right) = \frac{{a\sqrt 3 }}{3}\).

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|⛎{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🥂{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|♍{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|𒐪{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|𝓰{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|ౠ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|