Giải bài 7 trang 37 Chuyên đề học tập Toán 12 - Cánh diềuTrong một phản ứng hoá học, lượng khí \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) thoát ra \(V(t)\) được tính theo thời gian \(t\) bằng công thức: \(V(t) = \frac{{0,2{k_1}}}{{{k_1} - {k_2}}}\left( {{e^{ - {k_2}t}} - {e^{ - {k_1}t}}} \right),\) Trong đó \(V(t)\) được tính theo đơn vị mililít và \(t\) được tính theo đơn vị giây; \({k_1},{k_2}\) là các hằng số sao cho \({k_1} > {k_2} > 0\). Lượng khí \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) thoát ra trong phản ứng đó có giá trị lớn nhất là bao nhiêu?
Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Quảng cáo
Đề bài Trong một phản ứng hoá học, lượng khí \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) thoát ra \(V(t)\) được tính theo thời gian \(t\) bằng công thức: \(V(t) = \frac{{0,2{k_1}}}{{{k_1} - {k_2}}}\left( {{e^{ - {k_2}t}} - {e^{ - {k_1}t}}} \right),\) Trong đó \(V(t)\) được tính theo đơn vị mililít và \(t\) được tính theo đơn vị giây; \({k_1},{k_2}\) là các hằng số sao cho \({k_1} > {k_2} > 0\). Lượng khí \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) thoát ra trong phản ứng đó có giá trị lớn nhất là bao nhiêu?Phương pháp giải - Xem chi tiết
+) Vẽ bảng biến thiên của hàm số \(V(t) = \frac{{0,2{k_1}}}{{{k_1} - {k_2}}}\left( {{e^{ - {k_2}t}} - {e^{ - {k_1}t}}} \right),\)với \(t \in (0; + \infty )\).
+) Ta sẽ tìm giá trị lớn nhất của hàm số \(V(t)\).
Lời giải chi tiết Xét hàm số \(V(t) = \frac{{0,2{k_1}}}{{{k_1} - {k_2}}}\left( {{e^{ - {k_2}t}} - {e^{ - {k_1}t}}} \right),\) với \({k_1} > {k_2} > 0\) và \(t \in (0; + \infty )\). Ta có \(V'(t) = \frac{{0,2{k_1}}}{{{k_1} - {k_2}}}\left( { - {k_2}{e^{ - {k_2}t}} + {k_1}{e^{ - {k_1}t}}} \right),\) Do đó \(V'(t) = 0 \Leftrightarrow \frac{{0,2{k_1}}}{{{k_1} - {k_2}}}\left( { - {k_2}{e^{ - {k_2}t}} + {k_1}{e^{ - {k_1}t}}} \right) = 0 \Leftrightarrow {k_2}{e^{ - {k_2}t}} = {k_1}{e^{ - {k_1}t}}\) \({e^{({k_2} - {k_1})t}} = \frac{{{k_2}}}{{{k_1}}} \Leftrightarrow ({k_2} - {k_1})t = ln\left( {\frac{{{k_2}}}{{{k_1}}}} \right) \Leftrightarrow t = \frac{{\ln \left( {\frac{{{k_2}}}{{{k_1}}}} \right)}}{{{k_2} - {k_1}}}.\) Đặt \({t_0} = \frac{{\ln \left( {\frac{{{k_2}}}{{{k_1}}}} \right)}}{{{k_2} - {k_1}}}.\) Ta có bảng biến thiên của hàm số
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |