ftw bet

Giải bài 65 trang 106 SBT toán 10 - Cánh diều

Cho tam giác ABC và G là trọng tâm của tam giác. Với mỗi điểm M, chứng minh rằng:

🎃Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Quảng cáo

Đề bài

Cho tam giác ABCG là trọng tâm của tam giác. Với mỗi điểm M, chứng minh rằng:

\(M{A^2} + M{B^2} + M{C^2} = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\) (*)

Phương pháp giải - Xem chi tiết

Bước 1: Sử dụng tính chất \({\overrightarrow a ^2} = {a^2}\) , tính chất trọng tâm tam giác và tách vectơ để biến đổi vế trái

Lời giải chi tiết

Do G là trọng tâm tam giác ABC❀ nên \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

Biến đổi vế trái (*) ta có:\(M{A^2} + M{B^2} + M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\)\( = {\left( {\overrightarrow {MG}  + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG}  + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG}  + \overrightarrow {GC} } \right)^2}\)                                      \( = 3{\overrightarrow {MG} ^2} + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2} + 2\overrightarrow {MG} \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right)\)                                      \( = 3{\overrightarrow {MG} ^2} + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2} + 2\overrightarrow {MG} .\overrightarrow 0 \)                                      \( = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\) = VP (*) (ĐPCM)

Quảng cáo

Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|