Giải bài 64 trang 51 sách bài tập toán 11 - Cánh diềuGiải mỗi bất phương trình sau:
Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo
Đề bài Giải mỗi bất phương trình sau: a) \({\log _{\frac{1}{2}}}\left( {2x - 6} \right) < - 3;\) b) \({\log _3}\left( {{x^2} - 2x + 2} \right) > 0;\) c) \({\log _4}\left( {2{x^2} + 3x} \right) \ge \frac{1}{2};\) d) \({\log _{0,5}}\left( {x - 1} \right) \ge {\log _{0,5}}\left( {5 - 2x} \right);\) e) \(\log \left( {{x^2} + 1} \right) \le \log \left( {x + 3} \right);\) g)\({\log _{\frac{1}{5}}}\left( {{x^2} - 6x + 8} \right) + lo{g_5}\left( {x - 4} \right) > 0.\)Phương pháp giải - Xem chi tiết
- Tìm điều kiện cho bất phương trình.
- Giải bất phương trình bằng cách đưa về cùng cơ số kết hợp biến đổi sử dụng công thức lôgarit.
Lời giải chi tiết a) Điều kiện: \(2x - 6 > 0 \Leftrightarrow x > 3.\) \({\log _{\frac{1}{2}}}\left( {2x - 6} \right) < - 3 \Leftrightarrow 2x - 6 > {\left( {\frac{1}{2}} \right)^{ - 3}} \Leftrightarrow 2x - 6 > 8 \Leftrightarrow x > 7\left( {TM} \right).\)b) Điều kiện: \({x^2} - 2x + 2 > 0 \Leftrightarrow {\left( {x - 1} \right)^2} + 1 > 0\) đúng \(\forall x \in \mathbb{R}.\)\(\begin{array}{l}{\log _3}\left( {{x^2} - 2x + 2} \right) > 0 \Leftrightarrow {x^2} - 2x + 2 > {3^0} \Leftrightarrow {x^2} - 2x + 2 > 1 \Leftrightarrow {x^2} - 2x + 1 > 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} > 0 \Leftrightarrow x \ne 1.\end{array}\)c) Điều kiện: \(2{x^2} + 3x > 0 \Leftrightarrow x\left( {2x + 3} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x > 0\\x < - \frac{3}{2}\end{array} \right.\) \({\log _4}\left( {2{x^2} + 3x} \right) \ge \frac{1}{2} \Leftrightarrow 2{x^2} + 3x \ge {4^{\frac{1}{2}}} \Leftrightarrow 2{x^2} + 3x \ge 2 \Leftrightarrow 2{x^2} + 3x - 2 \ge 0\)\( \Leftrightarrow \left( {2x - 1} \right)\left( {x + 2} \right) \ge 0 \Leftrightarrow - 2 \le x \le \frac{1}{2}.\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |