ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài 6.30 trang 28 SGK Toán 10 – Kết nối tri thức

Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tập tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó: a) \(y =  - {x^2} + 6x - 9\) b) \(y =  - {x^2} - 4x + 1\) c) \(y = {x^2} + 4x\) d) \(y = 2{x^2} + 2x + 1.\)

Phương pháp giải - Xem chi tiết

Cho hàm số \(y =  a{x^2} +bx + c\) -   Xác định tọa độ đỉnh \(I(\frac {-b} {a};\frac {-\Delta} {4a})\) -   Trục đối xứng \(x=\frac {-b} {a}\) -   Giao với trục \(Ox,\,\,Oy.\) -   Xác định tập giá trị của hàm số -   Từ đồ thị tìm khoảng đồng biến, nghịch biến của hàm số

Lời giải chi tiết

a) \(y =  - {x^2} + 6x - 9\) Ta có: \(a =  - 1\) nên parabol quay bề lõm xuống dưới. Đỉnh \(I\left( {3;0} \right).\) Trục đối xứng \(x = 3.\) Giao điểm của đồ thị với trục \(Oy\) là: \(A\left( {0; - 9} \right).\) Parabol cắt trục hoành tại \(x = 3.\)

 

Tập giá trị của hàm số là: \(\left( { - \infty ;0} \right].\) Từ đồ thị ta thấy: Hàm số \(y =  - {x^2} + 6x - 9\) đồng biến trên khoảng \(\left( { - \infty ;3} \right)\) và nghịch biến trên khoảng \(\left( {3; + \infty } \right).\) b) \(y =  - {x^2} - 4x + 1\) Ta có: \(a =  - 1\) nên parabol quay bề lõm xuống dưới. Đỉnh \(I\left( { - 2;5} \right).\) Trục đối xứng \(x =  - 2.\) Giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;1} \right).\) Giao điểm của hàm số với trục \(Ox\) là: \(x =  - 2 + \sqrt 5 \) và \(x =  - 2 - \sqrt 5 .\)

 

Tập giá trị của hàm số là: \(\left( { - \infty ;5} \right].\) Từ đồ thị ta thấy: Hàm số \(y =  - {x^2} - 4x + 1\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và nghịch biến trên khoảng \(\left( { - 2; + \infty } \right).\) c) \(y = {x^2} + 4x\) Ta có: \(a = 1 > 0\) nên parabol quay bề lõm lên trên. Đỉnh \(I\left( { - 2; - 4} \right).\) Trục đối xứng \(x =  - 2.\) Giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;0} \right).\) Giao điểm của hàm số với trục \(Ox\) là: \(x = 0\) và \(x =  - 4.\)

 

Tập giá trị của hàm số là: \(\left[ { - 4; + \infty } \right).\) Từ đồ thị ta thấy: Hàm số \(y = {x^2} + 4x\) đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right).\) d) \(y = 2{x^2} + 2x + 1\) Ta có: \(a = 2 > 0\) nên parabol quay bề lõm lên trên. Đỉnh \(I\left( { - \frac{1}{2};\frac{1}{2}} \right).\) Trục đối xứng \(x =  - \frac{1}{2}.\) giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;1} \right).\) Đồ thị hàm số không có giao điểm với trục \(Ox.\) Lấy điểm \(\left( {1;5} \right)\) thuộc đồ thị hàm số, điểm đối xứng với điểm đó qua trục đối xứng \(x =  - \frac{1}{2}\) là: \(\left( { - 2;5} \right).\)

 

Tập giá trị của hàm số là: \(\left[ {\frac{1}{2}; + \infty } \right).\) Từ đồ thị ta thấy: Hàm số \(y = 2{x^2} + 2x + 1\) đồng biến trên khoảng \(\left( { - \frac{1}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - \frac{1}{2}} \right).\)

Quảng cáo

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close
{muse là gì}|ꦯ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🧸{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|💎{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🦹{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|෴{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🍨{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|