Giải bài 6 trang 134 sách bài tập toán 11 - Chân trời sáng tạo tập 1Cho hình chóp S. ABCD, đáy ABCD là hình thang có đáy lớn AB và \(AD = a\). Mặt bên SAB là tam giác cân tại S, \(SA = a\); mặt phẳng (R) song song với (SAB) và cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q. a) Chứng minh MNPQ là hình thang cân. b) Đặt \(x = AM\) với \(0 < x < a\). Tính MQ theo a và x.𒊎Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Đề bài Cho hình chóp S. ABCD, đáy ABCD là hình thang có đáy lớn AB và \(AD = a\). Mặt bên SAB là tam giác cân tại S, \(SA = a\); mặt phẳng (R) song song với (SAB) và cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q. a) Chứng minh MNPQ là hình thang cân. b) Đặt \(x = AM\) với \(0 < x < a\). Tính MQ theo a và x.Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính chất của hai mặt phẳng song song để chứng minh: Cho hai mặt phẳng (P) và (Q) song song với nhau. Nếu mặt phẳng (R) cắt (P) thì cắt (Q) và hai giao tuyến của chúng song song với nhau.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |