ftw bet

Giải bài 5.32 trang 36 sách bài tập toán 12 - Kết nối tri thức

Trong không gian Oxyz, góc giữa đường thẳng (Delta :frac{{x + 3}}{1} = frac{{y + 1}}{{sqrt 2 }} = frac{{z + 2}}{1}) và mặt phẳng (Oxz) bằng A. ({45^ circ }). B. ({30^ circ }). C. ({60^ circ }). D. ({90^ circ }).

🧸Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Quảng cáo

Đề bài

Trong không gian Oxyz, góc giữa đường thẳng \(\Delta :\frac{{x + 3}}{1} = \frac{{y + 1}}{{\sqrt 2 }} = \frac{{z + 2}}{1}\) và mặt phẳng (Oxz) bằng A. \({45^ \circ }\). B. \({30^ \circ }\). C. \({60^ \circ }\). D. \({90^ \circ }\).

Phương pháp giải - Xem chi tiết

Xác định vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng sau đó tính sin góc tạo bởi đường thẳng và mặt phẳng.

Lời giải chi tiết

Vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u  = \left( {1;\sqrt 2 ;1} \right)\) và vectơ pháp tuyến của (Oxz) là \(\overrightarrow j  = \left( {0;1;0} \right)\). Ta có \(\sin \left( {\Delta ,\left( {Oxz} \right)} \right) = \frac{{\left| {\overrightarrow u  \cdot \overrightarrow j } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow j } \right|}} = \frac{{\left| {\sqrt 2 } \right|}}{{\sqrt {1 + 2 + 1}  \cdot \sqrt 1 }} = \frac{{\sqrt 2 }}{2}\). Suy ra \(\left( {\Delta ,\left( {Oxz} \right)} \right) = {45^ \circ }\). Vậy ta chọn đáp án A.

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|