ftw bet

Giải bài 5.15 trang 31 sách bài tập toán 12 - Kết nối tri thức

Trong không gian Oxyz, tính góc giữa hai đường thẳng: \(\Delta :\frac{{x - 2}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\) và \(\Delta ':\left\{ \begin{array}{l}x = 3 + 2t\\y = - 1 + t\\z = 3 + t\end{array} \right.\)

🌠Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Quảng cáo

Đề bài

Trong không gian Oxyz, tính góc giữa hai đường thẳng: \(\Delta :\frac{{x - 2}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\) và \(\Delta ':\left\{ \begin{array}{l}x = 3 + 2t\\y =  - 1 + t\\z = 3 + t\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Xác định vectơ chỉ phương của hai đường thẳng, áp dụng công thức tính cosin của hai đường thẳng trong không gian. Từ đó ta tìm góc.

Lời giải chi tiết

Vectơ chỉ phương của đường thẳng \(\Delta \) là \(\overrightarrow u  = \left( {1; - 1;2} \right)\), vectơ chỉ phương của đường thẳng \(\Delta '\) là \(\overrightarrow {u'}  = \left( {2;1;1} \right)\). Ta có \(\cos \left( {\Delta ,\Delta '} \right) = \frac{{\left| {\overrightarrow u  \cdot \overrightarrow {u'} } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow {u'} } \right|}} = \frac{{2 - 1 + 2}}{{\sqrt 6  \cdot \sqrt 6 }} = \frac{1}{2}\). Suy ra \(\left( {\Delta ,\Delta '} \right) = {60^ \circ }\).

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|