ftw bet

Giải bài 5 trang 97 sách bài tập toán 10 - Chân trời sáng tạo

Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.

𒁃Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Quảng cáo

Đề bài

Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR NQS có cùng trọng tâm.

Lời giải chi tiết

Gọi O là trọng tâm của tam giác MPR

Ta có MN là đường trung bình của tam giác ABC ⛎nên \(\overrightarrow {MN}  = \frac{1}{2}\overrightarrow {AC} \)

Tương tự PQ RS cũng là đường trung bình của tam giác CDE EFA nên

\(\overrightarrow {PQ}  = \frac{1}{2}\overrightarrow {CE} ;\overrightarrow {RS}  = \frac{1}{2}\overrightarrow {EA} \)Từ đó suy ra \(\overrightarrow {MN}  + \overrightarrow {PQ}  + \overrightarrow {RS}  = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {CE}  + \frac{1}{2}\overrightarrow {EA}  = \frac{1}{2}\left( {\overrightarrow {AC}  + \overrightarrow {CE}  + \overrightarrow {EA} } \right) = \overrightarrow 0 \)\( \Rightarrow \overrightarrow {MN}  + \overrightarrow {PQ}  + \overrightarrow {RS}  = \overrightarrow 0 \)\( \Leftrightarrow \left( {\overrightarrow {MO}  + \overrightarrow {ON} } \right) + \left( {\overrightarrow {PO}  + \overrightarrow {OQ} } \right) + \left( {\overrightarrow {RO}  + \overrightarrow {OS} } \right) = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {ON}  + \overrightarrow {OQ}  + \overrightarrow {OS}  = \overrightarrow {OM}  + \overrightarrow {OP}  + \overrightarrow {OR} \)

Mà ta có O là trọng tâm của tam giác MPR 🌌nên \(\overrightarrow {OM}  + \overrightarrow {OP}  + \overrightarrow {OR}  = \overrightarrow 0 \)

Suy ra \(\overrightarrow {ON}  + \overrightarrow {OQ}  + \overrightarrow {OS}  = \overrightarrow {OM}  + \overrightarrow {OP}  + \overrightarrow {OR}  = \overrightarrow 0 \)

Vậy O vừa trọng tâm của tam giác MPR vừa là trọng tâm của tam giác NQS

Quảng cáo

Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|