Giải bài 4.45 trang 69 sách bài tập toán 7 - Kết nối tri thức với cuộc sốngCho ABC là tam giác cân tại đỉnh A. Chứng minh rằng: a) Hai đường trung tuyến BM, CN bằng nhau (H.4.50a). b) Hai đường phân giác BE, CF bằng nhau (H.4.50b)ꦡTổng hợp đề thi học kì 2 lớp 7 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên...Quảng cáo
Đề bài Cho ABC là tam giác cân tại đỉnh A. Chứng minh rằng: a) Hai đường trung tuyến BM, CN bằng nhau (H.4.50a). b) Hai đường phân giác BE, CF bằng nhau (H.4.50b)Phương pháp giải - Xem chi tiết
a)Chứng minh \(\Delta ABM = \Delta ACN\left( {c - g - c} \right)\)
b)Chứng minh: \(\Delta ABE = \Delta ACF\left( {g - c - g} \right)\)
Lời giải chi tiết a) Ta có: \(AM = \dfrac{{AC}}{2}; AN=\dfrac{{AB}}{2}\).Mà tam giác ABC cân tại A nên AB = AC.\(\Rightarrow AM=AN\)Xét \(\Delta ABM\) và \(\Delta ACN\) có:AB = AC\(\begin{array}{l}AM = AN\\\widehat A:Chung\\ \Rightarrow \Delta ABM = \Delta ACN\left( {c - g - c} \right)\\ \Rightarrow BM = CN\end{array}\)b) Ta có: \(\widehat {ABE} = \dfrac{{\widehat {ABC}}}{2}\) (do BE là tia phân giác của góc ABC)\(\widehat {ACF}= \dfrac{{\widehat {ACB}}}{2}\) (do CF là tia phân giác của góc ACB)Mà tam giác ABC cân tại A nên \(\widehat {ABC}=\widehat {ACB}\)Do đó, \(\widehat {ABE} = \widehat {ACF}\)Xét \(\Delta ABE\) và \(\Delta ACF\) có:\(\widehat A:Chung\\AB=AC\\\widehat {ABE} = \widehat {ACF}\\ \Rightarrow \Delta ABE = \Delta ACF\left( {g - c - g} \right)\)\(\Rightarrow BE = CF.\) ( 2 cạnh tương ứng)
Quảng cáo
Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |