Giải bài 4.29 trang 71 SGK Toán 10 – Kết nối tri thứcTrong mặt phẳng tọa độ, vectơ nào sau đây có độ dài bằng 1?🍌Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...Quảng cáo
Đề bài Trong mặt phẳng tọa độ, vectơ nào sau đây có độ dài bằng 1? A. \(\overrightarrow a = (1;1)\) B. \(\overrightarrow b = (1; - 1)\) C. \(\overrightarrow c = \left( {2;\frac{1}{2}} \right)\) D. \(\overrightarrow d = \left( {\dfrac{1}{{\sqrt 2 }};\dfrac{{ - 1}}{{\sqrt 2 }}} \right)\)Phương pháp giải - Xem chi tiết
Tính độ dài vectơ \(\overrightarrow a \;(x;y)\) theo công thức: \(|\overrightarrow a |\, = \sqrt {{x^2} + {y^2}} \).
Lời giải chi tiết A. Ta có: \(\overrightarrow a = (1;1) \Rightarrow \;|\overrightarrow a |\; = \sqrt {{1^2} + {1^2}} = \sqrt 2 \ne 1\). (Loại)B. Ta có: \(\overrightarrow b = (1; - 1) \Rightarrow \;|\overrightarrow b |\; = \sqrt {{1^2} + {{( - 1)}^2}} = \sqrt 2 \ne 1\). (Loại)C. Ta có: \(\overrightarrow c = \left( {2;\dfrac{1}{2}} \right) \Rightarrow \;|\overrightarrow c |\; = \sqrt {{2^2} + {{\left( {\dfrac{1}{2}} \right)}^2}} = \dfrac{{\sqrt {17} }}{2} \ne 1\). (Loại)D. Ta có: \(\overrightarrow d = \left( {\dfrac{1}{{\sqrt 2 }};\frac{{ - 1}}{{\sqrt 2 }}} \right) \Rightarrow \;|\overrightarrow a |\; = \sqrt {{{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\frac{{11}}{{\sqrt 2 }}} \right)}^2}} = 1\). (Thỏa mãn yc)Chọn D
Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |