Giải bài 4.24 trang 17 sách bài tập toán 12 - Kết nối tri thứcTính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh (Ox): a) (y = 2sqrt x ,{rm{ y}} = 0,{rm{ }}x = 1,{rm{ }}x = 4); b) (y = 4x,{rm{ }}y = {x^3},{rm{ }}x = 0,{rm{ }}x = 2).🌌Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Đề bài Tính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh \(Ox\): a) \(y = 2\sqrt x ,{\rm{ y}} = 0,{\rm{ }}x = 1,{\rm{ }}x = 4\); b) \(y = 4x,{\rm{ }}y = {x^3},{\rm{ }}x = 0,{\rm{ }}x = 2\).Phương pháp giải - Xem chi tiết
Ý a: Sử dụng trực tiếp công thức tính thể tích khối tròn xoay .
Ý b: Tính lần lượt thể tích khi quay hình phẳng giới hạn bởi các đường \(y = 4x,{\rm{ }}y = 0,\)\({\rm{ }}x = 0,\) \(x = 2\) quanh trục Ox và thể tích khối tròn xoay khi quay hình phẳng giới hạn bởi các đường \(y = {x^3},{\rm{ }}y = 0,{\rm{ }}x = 0,{\rm{ }}x = 2\) quanh trục Ox. Lấy hiệu hai thể tích vừa tính ta tìm được thể tích theo yêu cầu, tuy nhiên ta cần xác định xem lấy thể tích nào trừ thể tích còn lại phụ thuộc vào các đồ thị.
Lời giải chi tiết a) Thể tích cần tìm là \(V = \pi \int\limits_1^4 {{{\left( {2\sqrt x } \right)}^2}dx} = \pi \int\limits_1^4 {4xdx} = 2\pi \left. {{x^2}} \right|_1^4 = 32\pi - 2\pi = 30\pi \). b) Ta có hình vẽ biểu hình phẳng cần tính diện tích như bên dưới.
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |