Giải bài 42 trang 77 sách bài tập toán 12 - Cánh diềuTrong không gian với hệ toạ độ \(Oxyz\), cho \(A\left( {1;0;1} \right),B\left( {2;1;2} \right)\) và \(C\left( {0; - 4;0} \right)\). a) Chứng minh rằng ba điểm \(A,B,C\) không thẳng hàng. b) Tìm toạ độ của điểm \(D\) sao cho tứ giác \(ABCD\) là hình bình hành. c) Tìm toạ độ trọng tâm \(G\) của tam giác \(ABC\). d) Tính chu vi của tam giác \(ABC\). e) Tính \(\cos \widehat {BAC}\).
Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Quảng cáo
Đề bài Trong không gian với hệ toạ độ \(Oxyz\), cho \(A\left( {1;0;1} \right),B\left( {2;1;2} \right)\) và \(C\left( {0; - 4;0} \right)\). a) Chứng minh rằng ba điểm \(A,B,C\) không thẳng hàng. b) Tìm toạ độ của điểm \(D\) sao cho tứ giác \(ABCD\) là hình bình hành. c) Tìm toạ độ trọng tâm \(G\) của tam giác \(ABC\). d) Tính chu vi của tam giác \(ABC\). e) Tính \(\cos \widehat {BAC}\).Phương pháp giải - Xem chi tiết
‒ Sử dụng tính chất: Ba điểm \(A,B,C\) thẳng hàng nếu hai vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương.
‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\).
‒ Sử dụng công thức toạ độ trọng tâm \(G\) của tam giác \(ABC\):
\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).
‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):
\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).
‒ Sử dụng công thức tính góc của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).
Lời giải chi tiết
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |