Giải bài 4.18 trang 13 sách bài tập toán 12 - Kết nối tri thứcTìm chi phí trung bình trên mỗi đơn vị sản phẩm trong khoảng thời gian thời gian hai năm nếu chi phí cho mỗi đơn vị được tính bởi (cleft( t right) = 0,005{t^2} + 0,02t + 12,5) với (0 le t le 24), tính theo tháng.
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Tìm chi phí trung bình trên mỗi đơn vị sản phẩm trong khoảng thời gian thời gian hai năm nếu chi phí cho mỗi đơn vị được tính bởi \(c\left( t \right) = 0,005{t^2} + 0,02t + 12,5\) với \(0 \le t \le 24\), tính theo tháng.Phương pháp giải - Xem chi tiết
Tìm nguyên hàm của \(c\left( t \right) = 0,005{t^2} + 0,02t + 12,5\), tính \(\frac{1}{{24}}\int\limits_0^{24} {c\left( t \right)dt} \).
Lời giải chi tiết Ta có \(\int {c\left( t \right)dt = } \int {\left( {0,005{t^2} + 0,02t + 12,5} \right)dt} = 0,005 \cdot \frac{{{t^3}}}{3} + 0,02 \cdot \frac{{{t^2}}}{2} + 12,5t + C\). Chi phí trung bình trên mỗi đơn vị sản phẩm trong khoảng thời gian thời gian hai năm là \(\frac{1}{{24}}\int\limits_0^{24} {c\left( t \right)dt} = \left. {\left( {0,005 \cdot \frac{{{t^3}}}{3} + 0,02 \cdot \frac{{{t^2}}}{2} + 12,5t} \right)} \right|_0^{24} = \frac{1}{{24}}\left( {\frac{{576}}{{25}} + \frac{{144}}{{25}} + 300} \right) = 13,7\).
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |