Giải bài 4 trang 46 sách bài tập toán 10 - Chân trời sáng tạoTìm khoảng đồng biến và nghịch biến của các hàm số sau:🅠Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...Quảng cáo
Đề bài Tìm khoảng đồng biến và nghịch biến của các hàm số sau: a) \(f\left( x \right) = \frac{1}{{ - x - 5}}\) b) \(f\left( x \right) = \left| {3{\rm{x}} - 1} \right|\)Phương pháp giải - Xem chi tiết
Bước 1: Xác định tập xác định của hàm số
Bước 2: Lấy \({x_1},{x_2}\) tùy ý thuộc tập xác định, thay vào f(x) tính và so sánh biết: Với hàm số \(y = f\left( x \right)\) xác định trên khoảng (a; b) thì ta có +) Hàm số đồng biến trên khoảng (a; b) 💙nếu \(\forall {x_1},{x_2} \in \left( {a;b} \right),{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\) +) Hàm số ngịch biến trên khoảng (a; b) 🌠nếu \(\forall {x_1},{x_2} \in \left( {a;b} \right),{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\) Bước 3: Kết luậnLời giải chi tiết a) Hàm số \(f\left( x \right) = \frac{1}{{ - x - 5}}\) xác định khi \( - x - 5 \ne 0 \Rightarrow x \ne - 5\) nên \(D = \mathbb{R}\backslash \left\{ { - 5} \right\}\)Lấy \({x_1},{x_2}\) là hai số tùy ý thuộc mỗi khoảng \(\left( { - \infty ; - 5} \right),\left( { - 5; + \infty } \right)\), sao cho \({x_1} < {x_2}\), ta có:\(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{ - {x_1} - 5}} - \frac{1}{{ - {x_2} - 5}} = \frac{{{x_2} - {x_1}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\)Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\) (1)Mặt khác, khi lấy x1 và x2 ൲cùng nhỏ hơn -5 hoặc cùng lớn hơn -5, ta đều có \({x_1} + 5\) và \({x_2} + 5\) luôn cùng dấu nên \(\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right) > 0\) (2) Kết hợp (1) và (2) ta có \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0\). Vậy hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 5} \right) \cup \left( { - 5; + \infty } \right)\)b) Hàm số \(f\left( x \right) = \left| {3{\rm{x}} - 1} \right|\) được viết lại như sau
Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |