Giải bài 39 trang 82, 83 sách bài tập toán 11 - Cánh diềuQuan sát đồ thị hàm số trong hình dưới đây và cho biết:
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Quan sát đồ thị hàm số trong hình dưới đây và cho biết:
LG a \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\) bằng: A. \(2\) B. \(1\) C. \( + \infty \) D. \( - \infty \)Phương pháp giải: Sử dụng đồ thị hàm số để xác định các giới hạn, và tính liên tục của hàm số đó.Lời giải chi tiết: Từ đồ thị, ta nhận xét rằng khi \(x \to + \infty \) thì \(f\left( x \right)\) tiến dần tới 2. Do vậy \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\). Đáp án đúng là A.LG b \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\) bằng: A. \(2\) B. \(1\) C. \( + \infty \) D. \( - \infty \)Phương pháp giải: Sử dụng đồ thị hàm số để xác định các giới hạn, và tính liên tục của hàm số đó.Lời giải chi tiết: Từ đồ thị, ta nhận xét rằng khi \(x\) tiến tới 0 về bên phải thì \(f\left( x \right)\) tiến dần tới âm vô cực. Do vậy \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \infty \). Đáp án đúng là D.LG c Hàm số \(y = f\left( x \right)\) liên tục trên khoảng: A. \(\left( { - \infty ;1} \right)\) B. \(\left( { - \infty ; + \infty } \right)\) C. \(\left( {1; + \infty } \right)\) D. \(\left( { - \infty ;2} \right)\)Phương pháp giải: Sử dụng đồ thị hàm số để xác định các giới hạn, và tính liên tục của hàm số đó.Lời giải chi tiết: Nhận xét rằng hàm số chỉ nằm ở bên phải trục tung, nên tập xác định của chúng là \(\left( {0, + \infty } \right)\). Suy ra các đáp án A, B, D sai. Nhận xét rằng trên khoảng \(\left( {1, + \infty } \right)\), đồ thị hàm số là “đường liền”, nên hàm số liên tục trên khoảng \(\left( {1, + \infty } \right)\). Đáp án đúng là C.
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |