Giải bài 36 trang 15 sách bài tập toán 10 - Cánh diềubiết E và G lần lượt là tập nghiệm của hai bất phương trình trong mỗi trường hợp sau:
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Quảng cáo
Đề bài Tìm \(D = E \cap G\), biết E và G lần lượt là tập nghiệm của hai bất phương trình trong mỗi trường hợp sau: a) \(5x - 2 > 0\)và \(3x + 7 \ge 0\) b) \(2x + 3 > 0\)và \(5x - 9 \le 0\) c) \(9 - 3x \ge 0\)và \(12 - 3x < 0\)Lời giải chi tiết a) Ta có: \(5x - 2 > 0 \Leftrightarrow x > \frac{2}{5}\) \( \Rightarrow E = \left\{ {x \in \mathbb{R}\left| {x > \frac{2}{5}} \right.} \right\} = \left( {\frac{2}{5}; + \infty } \right)\)Lại có: \(3x + 7 \ge 0 \Leftrightarrow x \ge - \frac{7}{3}\) \( \Rightarrow G = \left\{ {x \in \mathbb{R}\left| {x \ge - \frac{7}{3}} \right.} \right\} = \left[ { - \frac{7}{3}; + \infty } \right)\)Tập hợp \(E \cap G\) là tập hợp các số thực x sao cho \(x > \frac{2}{5}\) và \(x \ge \frac{7}{3}\)Hay \(E \cap G = \left\{ {x \in \mathbb{R}\left| {x > \frac{2}{5};x \ge - \frac{7}{3}} \right.} \right\} = \left\{ {x \in \mathbb{R}\left| {x > \frac{2}{5}} \right.} \right\} = E\)Vậy \(D = E\)b) Ta có: \(2x + 3 > 0 \Leftrightarrow x > - \frac{3}{2}\)\( \Rightarrow E = \left\{ {x \in \mathbb{R}\left| {x > - \frac{3}{2}} \right.} \right\} = \left( { - \frac{3}{2}; + \infty } \right)\)Lại có: \(5x - 9 \le 0 \Leftrightarrow x \le \frac{9}{5}\) \( \Rightarrow G = \left\{ {x \in \mathbb{R}\left| {x \le \frac{9}{5}} \right.} \right\} = \left( { - \infty ;\frac{9}{5}} \right]\)
Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |