ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài 34 trang 59 sách bài tập toán 12 - Cánh diều

Lập phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau: a) \(\Delta \) đi qua điểm \(A\left( {2; - 5;7} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 2;3;4} \right)\); b) \(\Delta \) đi qua hai điểm \(M\left( { - 1;0;4} \right)\) và \(N\left( {2;5;3} \right)\). c) \(\Delta \) đi qua điểm \(B\left( {3;2; - 1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x - 5y + 6z - 7 = 0\).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Lập phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau: a) \(\Delta \) đi qua điểm \(A\left( {2; - 5;7} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( { - 2;3;4} \right)\); b) \(\Delta \) đi qua hai điểm \(M\left( { - 1;0;4} \right)\) và \(N\left( {2;5;3} \right)\). c) \(\Delta \) đi qua điểm \(B\left( {3;2; - 1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x - 5y + 6z - 7 = 0\).

Phương pháp giải - Xem chi tiết

‒ Để lập phương trình đường thẳng, ta thường chỉ ra toạ độ một điểm thuộc đường thẳng và một vectơ chỉ phương của đường thẳng đó. ‒ Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\). ‒ Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\) là: \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\).

Lời giải chi tiết

a) Đường thẳng đi qua điểm \(A\left( {2; - 5;7} \right)\) và nhận \(\overrightarrow u  = \left( { - 2;3;4} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = 2 - 2t\\y =  - 5 + 3t\\z = 7 + 4t\end{array} \right.\). Đường thẳng đi qua điểm \(A\left( {2; - 5;7} \right)\) và nhận \(\overrightarrow u  = \left( { - 2;3;4} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - 2}}{{ - 2}} = \frac{{y + 5}}{3} = \frac{{z - 7}}{4}\). b) Ta có \(\overrightarrow {MN}  = \left( {3;5; - 1} \right)\) là một vectơ chỉ phương của đường thẳng \(\Delta \). Đường thẳng đi qua điểm \(M\left( { - 1;0;4} \right)\) và nhận \(\overrightarrow {MN}  = \left( {3;5; - 1} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x =  - 1 + 3t\\y = 5t\\z = 4 - t\end{array} \right.\). Đường thẳng đi qua điểm \(M\left( { - 1;0;4} \right)\) và nhận \(\overrightarrow {MN}  = \left( {3;5; - 1} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x + 1}}{3} = \frac{y}{5} = \frac{{z - 4}}{{ - 1}}\). c) Mặt phẳng \(\left( P \right):2x - 5y + 6z - 7 = 0\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {2; - 5;6} \right)\). Đường thẳng \(\Delta \) vuông góc với mặt phẳng \(\left( P \right)\) nên \(\overrightarrow n  = \left( {2; - 5;6} \right)\) là vectơ chỉ phương của đường thẳng \(\Delta \). Đường thẳng đi qua điểm \(B\left( {3;2; - 1} \right)\) và nhận \(\overrightarrow n  = \left( {2; - 5;6} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = 3 + 2t\\y = 2 - 5t\\z =  - 1 + 6t\end{array} \right.\). Đường thẳng đi qua điểm \(B\left( {3;2; - 1} \right)\) và nhận \(\overrightarrow n  = \left( {2; - 5;6} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - 3}}{2} = \frac{{y - 2}}{{ - 5}} = \frac{{z + 1}}{6}\).

  • 🍬 Giải bài 35 trang 59 sách bài tập toán 12 - Cánh diều Xác định vị trí tương đối của hai đường thẳng ({Delta _1},{Delta _2}) trong mỗi trường hợp sau: a) ({Delta _1}:frac{{x + 7}}{5} = frac{{y - 1}}{{ - 7}} = frac{{z + 2}}{{ - 2}}) và ({Delta _2}:left{ begin{array}{l}x = - 5 - 3t\y = - 10 - 4t\z = 3 + 7tend{array} right.) (với (t) là tham số); b) ({Delta _1}:left{ begin{array}{l}x = - 2 + 5t\y = 1 - t\z = 3tend{array} right.) (với (t) là tham số) và ({Delta _2}:frac{{x + 2}}{4} = frac{{y - 1}}{5} = frac{{z
  • 𒁏 Giải bài 36 trang 60 sách bài tập toán 12 - Cánh diều Tính góc giữa hai đường thẳng ({Delta _1},{Delta _2}) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ nếu cần): a) ({Delta _1}:left{ begin{array}{l}x = 3 + 2{t_1}\y = - 2 + {t_1}\z = 0end{array} right.) và ({Delta _2}:left{ begin{array}{l}x = 7 + {t_2}\y = - 3 - {t_2}\z = 2{t_2}end{array} right.) (({t_1},{t_2}) là tham số); b) ({Delta _1}:left{ begin{array}{l}x = 3 + t\y = 5 - 2t\z = 7 - 2tend{array} right.) (với (t) là tham số) và ({
  • 🎉 Giải bài 37 trang 60 sách bài tập toán 12 - Cánh diều Tính góc giữa đường thẳng (Delta ) và mặt phẳng (left( P right)) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ): a) (Delta :left{ begin{array}{l}x = 18 - sqrt 3 t\y = 11\z = 5 + tend{array} right.) (với (t) là tham số) và (left( P right):x - sqrt 3 y - z - 3 = 0); b) (Delta :frac{{x - 8}}{2} = frac{{y - 7}}{{ - 3}} = frac{{z - 6}}{3}) và (left( P right):3x - 4y + 5z - 6 = 0).
  • 💃 Giải bài 38 trang 60 sách bài tập toán 12 - Cánh diều Tính góc giữa hai mặt phẳng (làm tròn kết quả đến hàng đơn vị của độ): (left( {{P_1}} right):5x + 12y - 13z + 14 = 0) và (left( {{P_2}} right):3x + 4y + 5z - 6 = 0).
  • 💟 Giải bài 39 trang 60 sách bài tập toán 12 - Cánh diều Tính góc giữa mặt phẳng (left( P right):x - y = 0) và mặt phẳng (left( {Oyz} right)).
Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{muse là gì}|ꦺ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🎃{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|🌳{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|✱{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|🍸{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|ꦇ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|