Giải bài 34 trang 59 sách bài tập toán 12 - Cánh diềuLập phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau: a) \(\Delta \) đi qua điểm \(A\left( {2; - 5;7} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 2;3;4} \right)\); b) \(\Delta \) đi qua hai điểm \(M\left( { - 1;0;4} \right)\) và \(N\left( {2;5;3} \right)\). c) \(\Delta \) đi qua điểm \(B\left( {3;2; - 1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x - 5y + 6z - 7 = 0\).
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Lập phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau: a) \(\Delta \) đi qua điểm \(A\left( {2; - 5;7} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 2;3;4} \right)\); b) \(\Delta \) đi qua hai điểm \(M\left( { - 1;0;4} \right)\) và \(N\left( {2;5;3} \right)\). c) \(\Delta \) đi qua điểm \(B\left( {3;2; - 1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x - 5y + 6z - 7 = 0\).Phương pháp giải - Xem chi tiết
‒ Để lập phương trình đường thẳng, ta thường chỉ ra toạ độ một điểm thuộc đường thẳng và một vectơ chỉ phương của đường thẳng đó.
‒ Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).
‒ Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\).
Lời giải chi tiết a) Đường thẳng đi qua điểm \(A\left( {2; - 5;7} \right)\) và nhận \(\overrightarrow u = \left( { - 2;3;4} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = 2 - 2t\\y = - 5 + 3t\\z = 7 + 4t\end{array} \right.\). Đường thẳng đi qua điểm \(A\left( {2; - 5;7} \right)\) và nhận \(\overrightarrow u = \left( { - 2;3;4} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - 2}}{{ - 2}} = \frac{{y + 5}}{3} = \frac{{z - 7}}{4}\). b) Ta có \(\overrightarrow {MN} = \left( {3;5; - 1} \right)\) là một vectơ chỉ phương của đường thẳng \(\Delta \). Đường thẳng đi qua điểm \(M\left( { - 1;0;4} \right)\) và nhận \(\overrightarrow {MN} = \left( {3;5; - 1} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = - 1 + 3t\\y = 5t\\z = 4 - t\end{array} \right.\). Đường thẳng đi qua điểm \(M\left( { - 1;0;4} \right)\) và nhận \(\overrightarrow {MN} = \left( {3;5; - 1} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x + 1}}{3} = \frac{y}{5} = \frac{{z - 4}}{{ - 1}}\). c) Mặt phẳng \(\left( P \right):2x - 5y + 6z - 7 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {2; - 5;6} \right)\). Đường thẳng \(\Delta \) vuông góc với mặt phẳng \(\left( P \right)\) nên \(\overrightarrow n = \left( {2; - 5;6} \right)\) là vectơ chỉ phương của đường thẳng \(\Delta \). Đường thẳng đi qua điểm \(B\left( {3;2; - 1} \right)\) và nhận \(\overrightarrow n = \left( {2; - 5;6} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = 3 + 2t\\y = 2 - 5t\\z = - 1 + 6t\end{array} \right.\). Đường thẳng đi qua điểm \(B\left( {3;2; - 1} \right)\) và nhận \(\overrightarrow n = \left( {2; - 5;6} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - 3}}{2} = \frac{{y - 2}}{{ - 5}} = \frac{{z + 1}}{6}\).
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |