Giải bài 31 trang 65 sách bài tập toán 9 - Cánh diều tập 1Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức: a) \(\sqrt {25 - 10 + {x^2}} \) với \(x \le 5.\) b) \(\sqrt {{{\left( {9 + 12x + 4{x^2}} \right)}^2}} \) c) \(\sqrt {{{\left( {3x + 1} \right)}^6}} \) với \(x \ge \frac{{ - 1}}{3}\) d) \(\sqrt {\frac{{49{x^2}{{\left( {x + 5} \right)}^2}}}{{16}}} \) với \(x \ge 0\)
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức: a) \(\sqrt {25 - 10 + {x^2}} \) với \(x \le 5.\)b) \(\sqrt {{{\left( {9 + 12x + 4{x^2}} \right)}^2}} \) c) \(\sqrt {{{\left( {3x + 1} \right)}^6}} \) với \(x \ge \frac{{ - 1}}{3}\)d) \(\sqrt {\frac{{49{x^2}{{\left( {x + 5} \right)}^2}}}{{16}}} \) với \(x \ge 0\) Phương pháp giải - Xem chi tiết
Áp dụng \(\sqrt {{A^2}} = \left| A \right|.\)
Lời giải chi tiết a) \(\sqrt {25 - 10 + {x^2}} \) \(= \sqrt {{{\left( {5 - x} \right)}^2}} = \left| {5 - x} \right| = 5 - x\) (do \(x \le 5\)). b) \(\sqrt {{{\left( {9 + 12x + 4{x^2}} \right)}^2}}\) \(= \sqrt {{{\left[ {{{\left( {3 + 2x} \right)}^2}} \right]}^2}} = \left| {{{\left( {3 + 2x} \right)}^2}} \right| = {\left( {3 + 2x} \right)^2}\). c) \(\sqrt {{{\left( {3x + 1} \right)}^6}} \) \(= \sqrt {{{\left[ {{{\left( {3x + 1} \right)}^3}} \right]}^2}} = \left| {{{\left( {3x + 1} \right)}^3}} \right| = {\left( {3x + 1} \right)^3}\) (do \(x \ge \frac{{ - 1}}{3}\)). d) \(\sqrt {\frac{{49{x^2}{{\left( {x + 5} \right)}^2}}}{{16}}} \) \(= \frac{7}{4}\sqrt {{{\left[ {x\left( {x + 5} \right)} \right]}^2}} = \frac{7}{4}.\left| {x\left( {x + 5} \right)} \right| = \frac{7}{4}.x\left( {x + 5} \right)\) (do \(x \ge 0\)).
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |