Giải bài 3 trang 122 sách bài tập toán 11 - Chân trời sáng tạo tập 1Cho hình chóp S. ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SAB, I là trung điểm của AB và M là điểm thuộc cạnh AD sao cho \(AM = \frac{1}{3}AD\). Đường thẳng đi qua M và song song với AB cắt CI tại N. Chứng minh: a) NG//(SCD); b) MG//(SCD).🤡Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Đề bài Cho hình chóp S. ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SAB, I là trung điểm của AB và M là điểm thuộc cạnh AD sao cho \(AM = \frac{1}{3}AD\). Đường thẳng đi qua M và song song với AB cắt CI tại N. Chứng minh: a) NG//(SCD); b) MG//(SCD).Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về điều kiện để một đường thẳng song song với một mặt phẳng để chứng minh: Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng b nào đó nằm trong (P) thì a song song với (P).
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |