Giải bài 23 trang 50 sách bài tập toán 11 - Cánh diềuTìm số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết:
Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo
Đề bài Tìm số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết: a) \(\left\{ \begin{array}{l}{u_4} = 10\\{u_7} = 19\end{array} \right.\) b) \(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 10\\{u_1} + {u_6} = 17\end{array} \right.\) c) \(\left\{ \begin{array}{l}{S_{10}} = 165\\{S_{20}} = 630\end{array} \right.\)Phương pháp giải - Xem chi tiết
a, b) Sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\), rồi giải hệ phương trình ẩn \({u_1}\) và \(d\).
c) Sử dụng công thức \({S_n} = \frac{{\left[ {2{u_1} + \left( {n - 1} \right)d} \right]n}}{2}\), rồi giải hệ phương trình ẩn \({u_1}\) và \(d\).
Lời giải chi tiết a) Ta có:\(\left\{ \begin{array}{l}{u_4} = 10\\{u_7} = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\{u_1} + 6d = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3d = 9\\{u_1} + 3d = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = 3\\{u_1} + 3.3 = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = 3\\{u_1} = 1\end{array} \right.\) Vậy số hạng đầu và công sai của cấp số cộng lần lượt là 1 và 3.b) Ta có:\(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 10\\{u_1} + {u_6} = 17\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} - \left( {{u_1} + 2d} \right) + \left( {{u_1} + 4d} \right) = 10\\{u_1} + \left( {{u_1} + 5d} \right) = 17\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d = 10\\2{u_1} + 5d = 17\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 4d = 20\\2{u_1} + 5d = 17\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d = 10\\d = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 16\\d = - 3\end{array} \right.\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |