Giải bài 2.12 trang 44 Chuyên đề học tập Toán 12 - Kết nối tri thứcMột nhà máy sản xuất hai loại sản phẩm, mỗi sản phẩm yêu cầu sử dụng ba máy. Máy đầu tiên có thể được sử dụng nhiều nhất là 70 giờ, máy thứ hai nhiều nhất là 40 giờ và máy thứ ba nhiều nhất là 90 giờ. Sản phẩm thứ nhất cần 2 giờ trên máy 1, 1 giờ trên máy II và 1 giờ trên máy III; sản phẩm thứ hai cần 1 giờ cho mỗi máy I, II và 3 giờ trên máy III. Nếu lợi nhuận là 400 nghìn đồng/đơn vị cho sản phẩm thứ nhất và 600 nghìn đồng/đơn vị cho sản phẩm thứ hai, thì cần sản xuất bao nhiều đơn vị mỗi sảnꦗTổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Đề bài Một nhà máy sản xuất hai loại sản phẩm, mỗi sản phẩm yêu cầu sử dụng ba máy. Máy đầu tiên có thể được sử dụng nhiều nhất là 70 giờ, máy thứ hai nhiều nhất là 40 giờ và máy thứ ba nhiều nhất là 90 giờ. Sản phẩm thứ nhất cần 2 giờ trên máy 1, 1 giờ trên máy II và 1 giờ trên máy III; sản phẩm thứ hai cần 1 giờ cho mỗi máy I, II và 3 giờ trên máy III. Nếu lợi nhuận là 400 nghìn đồng/đơn vị cho sản phẩm thứ nhất và 600 nghìn đồng/đơn vị cho sản phẩm thứ hai, thì cần sản xuất bao nhiều đơn vị mỗi sản phẩm để lợi nhuận thu được là lớn nhất?Phương pháp giải - Xem chi tiết 𒆙F(x; y) đạt giá trị lớn nhất tại một trong các đỉnh của ngũ giác. Tính giá trị của F(x; y) tại các điểm cực biên. Lời giải chi tiết Gọi x và y lần lượt là số sản phẩm thứ nhất và sản phẩm thứ hai cần sản xuất. Lợi nhuận thu được là: 400x + 600y (nghìn đồng). Ta có hệ bất phương trình sau:\(\left\{ \begin{array}{l}x \ge 0,y \ge 0\\2x + y \le 70\\x + y \le 40\\x + 3y \le 90\end{array} \right.\) Miền nghiệm của hệ bất phương trình này là miền ngũ giác OABCD được tô màu như hình vẽ dưới đây:
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |