Giải bài 19 trang 39 sách bài tập toán 10 - Cánh diềuBiểu đồ đoạn thẳng ở Hình 4 cho biết kết quả thi Ngoại ngữ ở CLB của Dũng (đường nét liền) và Hoàng (đường nét đứt đậm) qua 9 lần kiểm tra
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Quảng cáo
Đề bài Biểu đồ đoạn thẳng ở Hình 4 cho biết kết quả thi Ngoại ngữ ở CLB của Dũng (đường nét liền) và Hoàng (đường nét đứt đậm) qua 9 lần kiểm tra Phương pháp giải - Xem chi tiết
+ Liệt kê các giá trị trong biểu đồ và sắp xếp các số liệu theo thứ tự không giảm
+ Tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\) với số cao nhất và thấp nhất lần lượt \({x_n},{x_1}\)
+ Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1}\)
Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tính cỡ mẫu \(n\), tìm tứ phân vị thứ hai \({Q_2}\)(chính là trung vị của mẫu).
Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
+ Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\) và độ lệch chuẩn \(S = \sqrt {{S^2}} \)
Lời giải chi tiết a) + Mẫu số liệu kết quả thi của bạn Dũng là: 8; 9; 7; 9; 7; 8; 8; 7; 9.+ Mẫu số liệu kết quả thi của bạn Hoàng là: 6; 10; 8; 8; 7; 9; 6; 9; 8.b)- Sắp xếp mẫu số liệu theo thứ tự tăng dầnMẫu số liệu kết quả thi của bạn Dũng là: 7; 7; 7; 8; 8; 8; 9; 9; 9 (1)Mẫu số liệu kết quả thi của bạn Hoàng là: 6; 6; 7; 8; 8; 8; 9; 9; 10 (2)- Khoảng biến thiên:+ Mẫu số liệu (1): Số cao nhất và thấp nhất lần lượt là 9 và 7 do đó khoảng biến thiên của dãy số liệu là: \(R = 9 - 7 = 2\)+ Mẫu số liệu (2): Số cao nhất và thấp nhất lần lượt là 10 và 6 do đó khoảng biến thiên của dãy số liệu là: \(R = 10 - 6 = 4\)- Mẫu số liệu (1):+ Vì \(n = 9\) là số lẻ nên tứ phân vị thứ hai là: \({Q_2} = 8\) là tứ phân vị+ Tứ phân vị thứ nhất là trung vị của 4 số đầu tiên của mẫu số liệu: \({Q_1} = \left( {7 + 7} \right):2 = 7\)+ Tứ phân vị thứ ba là trung vị của 4 số cuối của mẫu số liệu: \({Q_3} = \left( {9 + 9} \right):2 = 9\)+ Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1} = 9 - 7 = 2\)- Mẫu số liệu (2):+ Vì \(n = 9\) là số lẻ nên tứ phân vị thứ hai là: \({Q_2} = 8\) là tứ phân vị
Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |