Giải bài 1.52 trang 31 SGK Toán 8 - Cùng khám pháTrong các khẳng định sau, khẳng định nào đúng?Quảng cáo
Đề bài Trong các khẳng định sau, khẳng định nào đúng? a) \({\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\) là một đồng nhất thức b) \({\left( {a - b} \right)^3} = {a^3} - {b^3}\) là một đồng nhất thức c) \({a^2}{b^2} - {a^2} - {b^2} + 1 = \left( {{a^2} - 1} \right)\left( {{b^2} - 1} \right)\) là một đồng nhất thứcPhương pháp giải - Xem chi tiết
Đồng nhất thức là một hằng đẳng thức. Dựa vào 7 hằng đẳng thức và phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung để tìm xem khẳng định nào đúng.
Lời giải chi tiết Đáp án c) là đáp án đúng. Ta có:\(\begin{array}{l}{a^2}{b^2} - {a^2} - {b^2} + 1\\ = \left( {{a^2}{b^2} - {b^2}} \right) - \left( {{a^2} + 1} \right)\\ = {b^2}\left( {{a^2} - 1} \right) - \left( {{a^2} + 1} \right)\\ = \left( {{b^2} - 1} \right)\left( {{a^2} - 1} \right).\left( {{a^2} + 1} \right)\\ = \left( {{a^2} - 1} \right)\left( {{b^2} - 1} \right)\end{array}\)Trong khẳng định này đã có sử dụng hằng đẳng thức “Hiệu hai bình phương”. Vậy \({a^2}{b^2} - {a^2} - {b^2} + 1 = \left( {{a^2} - 1} \right)\left( {{b^2} - 1} \right)\) là một đồng nhất thức.
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |