ftw bet

Giải bài 1.51 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Trên đường tròn lượng giác, xác định điểm M biểu diễn các góc lượng giác có số đo sau và tính các giá trị lượng giác của chúng:

ꦚTổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo

Đề bài

Trên đường tròn lượng giác, xác định điểm Mꦗ  biểu diễn các góc lượng giác có số đo sau và tính các giá trị lượng giác của chúng:

a) \(\frac{{23\pi }}{4}\);                                 b) \(\frac{{31\pi }}{6}\);                    c) \( - {1380^0}\).

Phương pháp giải - Xem chi tiết

Đường tròn lượng giác có tâm tại gốc tọa độ, bán kính bằng 1, lấy điểm A(1;0) là gốc của đường tròn. Điểm trên đường tròn lượng giác biểu diễn góc lượng giác có số đo \(\alpha \) là điểm M trên đường tròn lượng giác sao cho sđ(OA, OM) = \(\alpha \). Ta có thể tính các giá trị lượng giác của các góc này bằng máy tính cầm tay.

Lời giải chi tiết

a) Ta có \(\frac{{23\pi }}{4} = 6\pi  - \frac{\pi }{4}\). Góc \(\frac{{23\pi }}{4}\)được biểu diễn bởi điểm M\(\left( {\frac{{\sqrt 2 }}{2}; - \frac{{\sqrt 2 }}{2}} \right)\) trên đường tròn lượng giác bên dưới.

Vậy \(\sin \frac{{31\pi }}{6} = \,\, - \frac{1}{2},\cos \frac{{31\pi }}{6} = \, - \frac{{\sqrt 3 }}{2}\,,\tan \frac{{31\pi }}{6} = \,\frac{1}{{\sqrt 3 }}\,,\cot \frac{{31\pi }}{6} = \sqrt 3 \).b) Ta có \(\frac{{31\pi }}{6} = 4\pi  + \frac{{7\pi }}{6}\). Góc \(\frac{{31\pi }}{6}\)được biểu diễn bởi điểm M\(\left( { - \frac{{\sqrt 3 }}{2}; - \frac{1}{2}} \right)\) trên đường tròn lượng giác bên dưới.

c) Ta có \( - {1380^0} =  - {4.360^0} + {60^0}\). Góc \( - {1380^0}\) được biểu diễn bởi điểm M\(\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2}} \right)\) trên đường tròn lượng giác bên dưới.

Vậy \(\sin ( - {1380^0}) = \frac{{\sqrt 3 }}{2},\,\,\cos \,( - {1380^0}) = \frac{1}{2},\,\,\,\tan \,( - {1380^0}) = \sqrt 3 ,\,\,\cot \,( - {1380^0}) = \frac{1}{{\sqrt 3 }}.\)

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|