Giải Bài 1.31 trang 24 SGK Toán 8 tập 1 - Kết nối tri thứcCho đa thức (A = 9x{y^4} - 12{x^2}{y^3} + 6{x^3}{y^2}). Với mỗi trường hợp sau đây, xét xem A có chia hết cho đơn thức B hay không? Thực hiện phép chia trong trường hợp A chia hết cho B.
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Cho đa thức \(A = 9x{y^4} - 12{x^2}{y^3} + 6{x^3}{y^2}\). Với mỗi trường hợp sau đây, xét xem A có chia hết cho đơn thức B hay không? Thực hiện phép chia trong trường hợp A chia hết cho B. a) \(B = 3{x^2}y\) b) \(B = - 3x{y^2}\)Video hướng dẫn giải Phương pháp giải - Xem chi tiết
Xét từng hạng tử của A có chia hết cho B hay không.
Đơn thức A chia hết cho đơn thức B nếu mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.
Lời giải chi tiết a) Không vì hạng tử \( 9x{y^4}\) có số mũ của biến x nhỏ hơn số mũ của biến x trong B. (1 < 2) b) Ta có: \(\begin{array}{l}A:B = \left( {9x{y^4} - 12{x^2}{y^3} + 6{x^3}{y^2}} \right):\left( { - 3x{y^2}} \right)\\ = 9x{y^4}:\left( { - 3x{y^2}} \right) - 12{x^2}{y^3}:\left( { - 3x{y^2}} \right) + 6{x^3}{y^2}:\left( { - 3x{y^2}} \right)\\ = - 3{y^2} + 4xy - 2{x^2}\end{array}\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |