ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải Bài 13 trang 93 sách bài tập toán 7 tập 1 - Cánh diều

Cho hình lăng trụ đứng tứ giác ABCD.MNPQ có đáy là hình thang vuông ABCD vuông tại B (AD song song với BC) với

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Cho hình lăng trụ đứng tứ giác ABCD.MNPQ có đáy là hình thang vuông ABCD vuông tại B (AD song song với BC) với \(AB = 20{\rm{ cm}}\), \(AD = 11{\rm{ cm}}\), \(BC = 15{\rm{ cm}}\) (Hình 21).

a) Tính tỉ số giữa thể tích của hình lăng trụ đứng tam giác ABC.MNP và thể tích của hình lăng trụ đứng tứ giác ABCD.MNPQ.

b) Tính tỉ số phần trăm giữa thể tích của hình lăng trụ đứng tam giác ABD.MNQ và thể tích của hình lăng trụ đứng tam giác BCD.NPQ.

c) So sánh thể tích của hai hình lăng trụ đứng tam giác ABD.MNQACD.MPQ.

Phương pháp giải - Xem chi tiết

a) Để tính tỉ số giữa thể tích của hình lăng trụ đứng tam giác ABC.MNP và thể tích của hình lăng trụ đứng tứ giác ABCD.MNPQไ, ta cần tính diện tích hai đáy tương ứng với hai hình.

b) Để tính tỉ số phần trăm giữa thể tích của hình lăng trụ đứng tam giác ABD.MNQ và thể tích của hình lăng trụ đứng tam giác BCD.NPQ✤, ta cần tính diện tích hai đáy tương ứng với hai hình rồi nhân với 100%.

c) Muốn so sánh thể tích của hai hình lăng trụ, ta so sánh diện tích và chiều cao tương ứng của hai hình với nhau.

Lời giải chi tiết

a) Ta có: \({S_{ABC}} = \dfrac{{20{\rm{ }}.{\rm{ }}15}}{2} = 150{\rm{ (c}}{{\rm{m}}^2});\\{S_{ABCD}} = \dfrac{{(11 + 15){\rm{ }}.{\rm{ }}20}}{2} = 260{\rm{ (c}}{{\rm{m}}^2}).\)

Tỉ số giữa thể tích của hình lăng trụ đứng tam giác ABC.MNP và thể tích của hình lăng trụ đứng tứ giác ABCD.MNPQ là:

\(\dfrac{{{V_{ABC.MNP}}}}{{{V_{ABCD.MNPQ}}}} = \dfrac{{{S_{ABC}}{\rm{ }}.{\rm{ }}BN}}{{{S_{ABCD}}{\rm{ }}.{\rm{ }}BN}} \\= \dfrac{{{S_{ABC}}}}{{{S_{ABCD}}}} = \dfrac{{150}}{{260}} = \dfrac{{15}}{{26}}.\) b) Ta có: \({S_{ABD}} = \dfrac{{20{\rm{ }}.{\rm{ }}11}}{2} = 110{\rm{ (c}}{{\rm{m}}^2});\\{S_{BCD}} = \dfrac{{15{\rm{ }}.{\rm{ }}20}}{2} = 150{\rm{ (c}}{{\rm{m}}^2}).\)

Tỉ số phần trăm giữa thể tích của hình lăng trụ đứng tam giác ABD.MNQ và thể tích của hình lăng trụ đứng tam giác BCD.NPQ là:

\(\dfrac{{{V_{ABD.MNQ}}{\rm{ }}.{\rm{ }}100\% }}{{{V_{BCD.NPQ}}}} = \dfrac{{{S_{ABD}}{\rm{ }}.{\rm{ }}BN{\rm{ }}.{\rm{ }}100\% }}{{{S_{BCD}}{\rm{ }}.{\rm{ }}BN}} \\ = \dfrac{{{S_{ABD}}{\rm{ }}.{\rm{ }}100\% }}{{{S_{BCD}}}} = \dfrac{{110{\rm{ }}.{\rm{ }}100\% }}{{150}} = 73,(3)\% .\) c) Ta có: \({S_{ABC}} = 150{\rm{ (c}}{{\rm{m}}^2});\\{S_{ACD}} = {S_{ABCD}} - {S_{ABC}} = 260 - 150 = 110{\rm{ (c}}{{\rm{m}}^2}).\) \({S_{ABD}} = 110{\rm{ (c}}{{\rm{m}}^2})\). Suy ra: \(\begin{array}{l}{S_{ACD}} = {S_{ABD}}\\ \Rightarrow {S_{ACD}}{\rm{ }}.{\rm{ }}BN = {S_{ABD}}{\rm{ }}.{\rm{ }}BN\\ \Rightarrow {V_{ABD.MNQ}} = {V_{ACD.MPQ}}\end{array}\)

Vậy thể tích của hai hình lăng trụ đứng tam giác ABD.MNQACD.MPQ bằng nhau.

Quảng cáo

Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|༺{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🎀{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|🐠{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🔜{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|꧒{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|💖{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|