Giải bài 1.3 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thứcMột túi gồm các tấm thẻ giống hệt nhau chỉ khác màu, trong đó có 10 tấm thẻ màu đỏ và 6 tấm thẻ màu xanh. Rút ngẫu nhiên đồng thời ra 3 tấm thẻ từ trong túi. a) Gọi X là số thẻ đỏ trong ba thẻ rút ra. Lập bảng phân bố xác suất của X. Tính (Eleft( X right).) b) Giả sử rút mỗi tấm thẻ màu đỏ được 5 điểm và rút mỗi tấm thẻ màu xanh được 8 điểm. Gọi Y là số điểm thu được sau khi rút 3 tấm thẻ từ trong túi. Lập bảng phân bố xác suất của Y.
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Một túi gồm các tấm thẻ giống hệt nhau chỉ khác màu, trong đó có 10 tấm thẻ màu đỏ và 6 tấm thẻ màu xanh. Rút ngẫu nhiên đồng thời ra 3 tấm thẻ từ trong túi. a) Gọi X là số thẻ đỏ trong ba thẻ rút ra. Lập bảng phân bố xác suất của X. Tính \(E\left( X \right).\) b) Giả sử rút mỗi tấm thẻ màu đỏ được 5 điểm và rút mỗi tấm thẻ màu xanh được 8 điểm. Gọi Y là số điểm thu được sau khi rút 3 tấm thẻ từ trong túi. Lập bảng phân bố xác suất của Y.Phương pháp giải - Xem chi tiết
Bước 1: Tính xác suất của các biến cố
Bước 2: Lập bảng phân bố xác suất
Bước 3: Tính \(E\left( X \right)\)theo công thức
Lời giải chi tiết X là số thẻ đỏ trong ba thẻ rút ra \( \Rightarrow \) Giá trị của X thuộc tập {0; 1; 2; 3}. Số kết quả có thể là: \(C_{16}^3 = 560\). Biến cố \(\left\{ {X = 0} \right\}\): “Rút được 3 thẻ xanh”. \( \Rightarrow P\left( {X = 0} \right) = \frac{{C_6^3}}{{C_{16}^3}} = \frac{2}{{56}}\) Biến cố \(\left\{ {X = 1} \right\}:\) “Rút được 1 thẻ đỏ và 2 thẻ xanh”. \( \Rightarrow P\left( {X = 1} \right) = \frac{{C_{10}^1.C_6^2}}{{C_{16}^3}} = \frac{{15}}{{56}}\) Biến cố \(\left\{ {X = 2} \right\}:\) “Rút được 2 thẻ đỏ và 1 thẻ xanh”. \( \Rightarrow P\left( {X = 2} \right) = \frac{{C_{10}^2.C_6^1}}{{C_{16}^3}} = \frac{{27}}{{56}}\) Biến cố \(\left\{ {X = 3} \right\}:\) “Rút được 3 thẻ đỏ”. \( \Rightarrow P\left( {X = 3} \right) = \frac{{C_{10}^3}}{{C_{16}^3}} = \frac{{12}}{{56}}\) Bảng phân bố xác suất của X là
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |