Giải bài 1.21 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thứcTrong mặt phẳng tọa độ Oxy, cho A(1; 2), B(3; 6).𓂃Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Đề bài Trong mặt phẳng tọa độ Oxy, cho A(1; 2), B(3; 6). Viết phương trình đường tròn (C) là ảnh của đường tròn đường kính AB qua phép vị tự \({V_{(O,3)}}\).Phương pháp giải - Xem chi tiết
- Tìm ảnh của tâm qua \({V_{(O,3)}}\) bằng cách: Nếu \({V_{(I,k)}}{\rm{[}}M(x,y){\rm{]}} = M'(x',y')\). Khi đó, \(\left\{ \begin{array}{l}x' - a = k(x - a)\\y' - b = k(y - b)\end{array} \right.\) với \(I(a;b)\)
- Phương trình đường tròn tâm I (a,b), bán kính R là: \({\left( {x{\rm{ }}-{\rm{ a}}} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ b}}} \right)^2}\; = {\rm{ }}{{\rm{R}}^2}.\)
Lời giải chi tiết Gọi I là trung điểm của AB, ta có I(2; 4) là tâm của đường tròn đường kính AB với bán kính là \(R = IA = \sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {2 - 4} \right)}^2}} = \sqrt 5 \).Gọi I' và R' lần lượt là tâm và bán kính của đường tròn (C).Vì đường tròn (C) là ảnh của đường tròn đường kính AB qua phép vị tự\({V_{(O,3)}}\) nên I' là ảnh của I qua phép vị tự \({V_{(O,3)}}\) và \(R' = 3R = \;3\sqrt 5 \).Khi đó ta có: \(\overrightarrow {OI'} = 3\overrightarrow {OI} \). Từ đó suy ra I'(6; 12).Phương trình đường tròn (C) là \({\left( {x{\rm{ }}-{\rm{ }}6} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}12} \right)^2}\; = \;{\left( {3\sqrt 5 } \right)^2}\) hay \({\left( {x{\rm{ }}-{\rm{ }}6} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}12} \right)^2}\; = {\rm{ }}45.\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |