Giải bài 105 trang 43 sách bài tập toán 12 - Cánh diềuTìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị mỗi hàm số sau: a) (y = frac{{3{rm{x}} - 4}}{{ - 2{rm{x}} + 5}}); b) (y = frac{{3{x^3} + x - 2}}{{{x^3} - 8}}); c) (y = frac{{sqrt {{x^2} + 1} }}{x}).
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị mỗi hàm số sau: a) \(y = \frac{{3{\rm{x}} - 4}}{{ - 2{\rm{x}} + 5}}\); b) \(y = \frac{{3{x^3} + x - 2}}{{{x^3} - 8}}\); c) \(y = \frac{{\sqrt {{x^2} + 1} }}{x}\).Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết a) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{5}{2}} \right\}\). Ta có: • \(\mathop {\lim }\limits_{x \to {{\frac{5}{2}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\frac{5}{2}}^ - }} \frac{{3{\rm{x}} - 4}}{{ - 2{\rm{x}} + 5}} = + \infty ;\mathop {\lim }\limits_{x \to {{\frac{5}{2}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\frac{5}{2}}^ + }} \frac{{3{\rm{x}} - 4}}{{ - 2{\rm{x}} + 5}} = - \infty \) Vậy \(x = \frac{5}{2}\) là tiệm cận đứng của đồ thị hàm số đã cho. • \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{\rm{x}} - 4}}{{ - 2{\rm{x}} + 5}} = - \frac{3}{2};\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{\rm{x}} - 4}}{{ - 2{\rm{x}} + 5}} = - \frac{3}{2}\) Vậy \(y = - \frac{3}{2}\) là tiệm cận ngang của đồ thị hàm số đã cho. b) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 2 \right\}\). Ta có: • \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{3{x^3} + x - 2}}{{{x^3} - 8}} = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{3{x^3} + x - 2}}{{{x^3} - 8}} = + \infty \) Vậy \(x = 2\) là tiệm cận đứng của đồ thị hàm số đã cho. • \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^3} + x - 2}}{{{x^3} - 8}} = 3;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^3} + x - 2}}{{{x^3} - 8}} = 3\) Vậy \(y = 3\) là tiệm cận ngang của đồ thị hàm số đã cho. c) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\). Ta có: • \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {{x^2} + 1} }}{x} = - \infty ;\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {{x^2} + 1} }}{x} = + \infty \) Vậy \(x = 0\) là tiệm cận đứng của đồ thị hàm số đã cho. • \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = 1;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = - 1\) Vậy \(y = 1\) và \(y = - 1\) là các tiệm cận ngang của đồ thị hàm số đã cho.
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |