Đề thi vào 10 môn Toán Ninh Thuận năm 2021Tải về Bài 1 (2,0 điểm): Giải các phương trình, hệ phương trình:
Toán - Văn - Anh
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tải về
Đề bài Bài 1 (2,0 điểm): Giải các phương trình, hệ phương trình: 1) \(2x - 1 = x - \dfrac{1}{3}\) 2) \(\left\{ \begin{array}{l}3x + y = 4\\7x - 5y = - 9\end{array} \right.\)Bài 2 (2,0 điểm): 1) Vẽ đồ thị \(\left( P \right)\) của hàm số \(y = - \dfrac{1}{4}{x^2}.\) 2) Tìm điều kiện của \(m\) đề đường thẳng \(\left( d \right):\,\,y = - x + m\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ trái dấu.Bài 3 (2,0 điểm): Bạn Hoàng làm việc tại nhà hàng nọ, bạn ấy được trả tám trăm ngàn đồng cho 40 giờ làm việc tại quán trong một tuần. Mỗi giờ làm thêm trong tuần bạn được trả bằng 150% số tiền mà mỗi giờ bạn ấy được trả trong 40 giờ đầu. Nếu trong tuần đó bạn Hoàng được trả chín trăm hai mươi nghìn đồng thì bạn ấy đã phải làm thêm bao nhiêu giờ? Bài 4 (4 điểm): Cho tam giác \(ABC\) có các góc \(\angle ABC,\,\,\angle ACB\) nhọn và \(\angle BAC = {60^0}.\) Các đường phân giác trong \(BE,\,\,CF\) của \(\Delta ABC\) cắt nhau tại \(I.\) 1) Chứng minh tứ giác \(AEIF\) nội tiếp. 2) Gọi \(K\) là giao điểm thứ hai \(\left( {K \ne B} \right)\) của đường thẳng \(BC\) với đường tròn ngoại tiếp tam giác \(BFI.\) Chứng minh rằng \(\Delta AFK\) cân tại F.Lời giải Bài 1 (TH): Phương pháp: 1) Đưa phương trình ban đầu về dạng \(ax + b = 0\) để tìm nghiệm của phương trình. 2) Vận dụng phương pháp cộng đại số để tìm nghiệm của hệ phương trình.Cách giải: 1) \(2x - 1 = x - \dfrac{1}{3}\) \(\begin{array}{l} \Leftrightarrow 2x - x = - \dfrac{1}{3} + 1\\ \Leftrightarrow x = \dfrac{2}{3}\end{array}\) Vậy phương trình có nghiệm \(x = \dfrac{2}{3}\). 2) \(\left\{ \begin{array}{l}3x + y = 4\\7x - 5y = - 9\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}15x + 5y = 20\\7x - 5y = - 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}22x = 11\\y = 4 - 3x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{2}\\y = 4 - \dfrac{3}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{2}\\y = \dfrac{5}{2}\end{array} \right.\) Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {\dfrac{1}{2};\dfrac{5}{2}} \right)\).Bài 2 (VD): Phương pháp: 1) Lập bảng giá trị tương ứng của \(x\) và \(y\) sau đó vẽ đồ thị hàm số của hàm số \(\left( P \right)\). 2) Xét phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ trái dấu \( \Leftrightarrow \) phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) có hai nghiệm trái dấu \( \Leftrightarrow ac < 0\)Cách giải: 1) Ta có bảng giá trị:
Bài 3 (VD): Phương pháp: Giải bài toán bằng cách lập phương trình,cụ thể gọi số giờ bạn Hoàng đã làm thêm trong tuần là \(x\) (giờ) (ĐK: \(x > 0\)), từ giả thiết của đề bài lập phương trình, giải phương trình sau đó đối chiếu điều kiện và kết luận.Cách giải: Gọi số giờ bạn Hoàng đã làm thêm trong tuần là \(x\) (giờ) (ĐK: \(x > 0\)). Bạn Hoàng được trả 800 nghìn đồng cho 40 giờ làm việc trong tuần nên mỗi giờ làm việc trong tuần bạn Hoàng nhận được \(\dfrac{{800}}{{40}} = 20\) (nghìn đồng). Vì mỗi giờ làm thêm trong tuần Hoàng được trả bằng 150% số tiền mà mỗi giờ bạn ấy được trả trong 40 giờ đầu tiên nên mỗi giờ làm thêm trong tuần Hoàng nhận được \(20.150\% = 30\) (nghìn đồng). Suy ra tổng số tiền Hoàng nhận được (tính cả làm thêm) trong mỗi tuần là: \(800 + 30x\) (nghìn đồng). Vì trong tuần đó bạn Hoàng được trả chín trăm hai mươi nghìn đồng nên ta có phương trình \(800 + 3x = 920 \Leftrightarrow 3x = 120 \Leftrightarrow x = 4\) (thỏa mãn). Vậy Hoàng đã làm thêm 4 giờ.Bài 4 (VDC): Phương pháp: 1) Vận dụng dấu hiệu nhận biết của tứ giác nội tiếp: tứ giác có tổng hai góc đối diện bẳng \({180^0}\) là tứ giác nội tiếp. 2) Vận dụng tính chất của tứ giác nội tiếp, mối quan hệ của góc – đường tròn.Cách giải:
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |