Đề thi vào 10 môn Toán Ninh Bình năm 2023Tải về Câu 1: 1. Rút gọn biểu thức \(A = 3\sqrt {16} {\rm{ \;}} - 2\sqrt 9 {\rm{ \;}} + \sqrt 4 \) 2. Tìm giá trị của tham số m để đường thẳng \(\left( {{d_1}} \right):y = \left( {m - 1} \right)x - 2\) song song với đường thẳng \(\left( {{d_2}} \right):y = 2x + 3\). 3. Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{3x + y = 10}\\{x - 2y = 1}\end{array}} \right.\)
Toán - Văn - Anh
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tải về
Đề bài Câu 1: 1. Rút gọn biểu thức \(A = 3\sqrt {16} {\rm{ \;}} - 2\sqrt 9 {\rm{ \;}} + \sqrt 4 \) 2. Tìm giá trị của tham số m để đường thẳng \(\left( {{d_1}} \right):y = \left( {m - 1} \right)x - 2\) song song với đường thẳng \(\left( {{d_2}} \right):y = 2x + 3\). 3. Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{3x + y = 10}\\{x - 2y = 1}\end{array}} \right.\)Câu 2: 1. Rút gọn biểu thức \(B = \frac{{x\sqrt x {\rm{ \;}} - 1}}{{x - 1}} - \frac{x}{{\sqrt x {\rm{ \;}} + 1}} + \frac{1}{{\sqrt x {\rm{ \;}} - 1}}\) với \(x \ge 0,{\mkern 1mu} {\mkern 1mu} x \ne 1\). 2. Cho phương trình \({x^2} - 2mx + 4m - 4 = 0{\mkern 1mu} {\mkern 1mu} \left( 1 \right)\) (x là ẩn số, m là tham số) a) Giải phương trình (1) với m = 3. b) Tìm tất cả các giá trị của m để phương trình (1) có 2 nghiệm phân biệt \({x_1},{\mkern 1mu} {\mkern 1mu} {x_2}\) thoả mãn \(\sqrt {{x_1}} {\rm{ \;}} + \sqrt {{x_2}} {\rm{ \;}} = 3\sqrt 2 \)Câu 3: Giải bài toán bằng ಌcách lập phương trình hoặc hệ phương trình. Hai đội công nhân làm chung một công việc thì làm xong trong 12 ngày. Khi làm riêng, để hoàn thành công việc trên thì đội thứ nhất cần nhiều thời gian hơn đội thứ hai là 10 ngày. Hỏi nếu làm riêng thì trong bao nhiêu ngày mỗi đội sẽ làm xong công việc trên?Câu 4: 1. Một dụng cụ gồm hai phần: một phần có dạng hình trụ, phần còn lại có dạng hình nón với các kích thước cho như hình vẽ bên. a) Tính chiều cao của dụng cụ hình nón. b) Tính thể tích dụng cụ đã cho (lấy \(\pi {\rm{ \;}} = 3,14\) ).Câu 5: 1. Tìm tất cả các cặp số nguyên (x;y) thoả mãn \(2{x^2} - x{y^2} - 2x + {y^2} + 5 = 0\). 2. Biết a, b, c là ba số thực dương thoả mãn điều kiện: \(\sqrt a {\rm{ \;}} + \sqrt b {\rm{ \;}} + \sqrt c {\rm{ \;}} = 3\). Chứng minh \(\sqrt {2{a^2} + 3ab + 2{b^2}} {\rm{ \;}} + \sqrt {2{b^2} + 3bc + 2{c^2}} {\rm{ \;}} + \sqrt {2{c^2} + 3ca + 2{a^2}} {\rm{ \;}} \ge 3\sqrt 7 \).----- HẾT ----- Lời giải chi tiết Câu 1 (TH): Phương pháp: 1) Khai phương căn bậc hai và rút gọn 2) \(d\parallel d' \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = a'}\\{b \ne b'}\end{array}} \right.\) 3) Giải hệ bằng phương pháp cộng đại sốCách giải: 1. Rút gọn biểu thức \(A = 3\sqrt {16} {\rm{ \;}} - 2\sqrt 9 {\rm{ \;}} + \sqrt 4 \) \(\begin{array}{*{20}{l}}{A = 3\sqrt {16} {\rm{ \;}} - 2\sqrt 9 {\rm{ \;}} + \sqrt 4 }\\{A = 3\sqrt {{4^2}} {\rm{ \;}} - 2\sqrt {{3^2}} {\rm{ \;}} + \sqrt {{2^2}} }\\{A = 3.4 - 2.3 + 2}\\{A = 12 - 6 + 2}\\{A = 6 + 2}\\{A = 8}\end{array}\) Vậy \(A = 8.\) 2. Tìm giá trị của tham số m để đường thẳng \(\left( {{d_1}} \right):y = \left( {m - 1} \right)x - 2\) song song với đường thẳng \(\left( {{d_2}} \right):y = 2x + 3\). Hai đường thẳng \(\left( {{d_1}} \right)\)và \(\left( {{d_2}} \right)\) song song với nhau khi và chỉ khi \(\left\{ {\begin{array}{*{20}{l}}{m - 1 = 2}\\{ - 2 \ne 3{\mkern 1mu} {\mkern 1mu} \left( {luon{\mkern 1mu} {\mkern 1mu} dung} \right)}\end{array}} \right. \Leftrightarrow m = 3\) Vậy \(m = 3\).3. Giải hệ phương trình \(\left\{ {\begin{array}💛{*{20}{l}}{3x + y 🌞= 10}\\{x - 2y = 1}\end{array}} \right.\) Ta có: \(\left\{ {\begin{array}{*{20}{l}}{3x + y = 10}\\{x - 2y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3x + y = 10}\\{3x - 6y = 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{7y = 7}\\{x = 2y + 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{y = 1}\\{x = 3}\end{array}} \right.\). Vậy hệ phương trình có nghiệm duy nhất là: \(\left( {x;y} \right) = \left( {3;1} \right).\)Câu 2 (VD): Phương pháp: 1) Phân tích mẫu số tìm mẫu số chung, quy đồng và rút gọn biểu thức 2a) Thay m = 3 và giải phương trình bậc hai 2b) Áp dụng hệ thức viet.Cách giải: 1. Rút gọn biểu thức \(B = \frac{{x\sqrt x {\rm{ \;}} - 1}}{{x - 1}} - \frac{x}{{\sqrt x {\rm{ \;}} + 1}} + \frac{1}{{\sqrt x {\rm{ \;}} - 1}}\) với \(x \ge 0,{\mkern 1mu} {\mkern 1mu} x \ne 1\). Với \(x \ge 0,{\mkern 1mu} {\mkern 1mu} x \ne 1\) ta có: \(\begin{array}{*{20}{l}}{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} B = \frac{{x\sqrt x - 1}}{{x - 1}} - \frac{x}{{\sqrt x + 1}} + \frac{1}{{\sqrt x - 1}}}\\{ \Leftrightarrow B = \frac{{x\sqrt x - 1 - x\left( {\sqrt x - 1} \right) + \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}}\\{ \Leftrightarrow B = \frac{{x\sqrt x - 1 - x\sqrt x + x + \sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}}\\{ \Leftrightarrow B = \frac{{x + \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}}\\{ \Leftrightarrow B = \frac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}}\\{ \Leftrightarrow B = \frac{{\sqrt x }}{{\sqrt x - 1}}}\end{array}\) Vậy với \(x \ge 0,{\mkern 1mu} {\mkern 1mu} x \ne 1\) thì \(B = \frac{{\sqrt x }}{{\sqrt x {\rm{ \;}} - 1}}\). 2. Cho phương trình \({x^2} - 2mx + 4m - 4 = 0{\mkern 1mu} {\mkern 1mu} \left( 1 \right)\) (x là ẩn số, m là tham số) a) Giải phương trình (1) với m = 3. Thay m = 3 vào phương trình (1) ta được: \({x^2} - 6x + 8 = 0\). Ta có: \(\Delta ' = {\left( { - 3} \right)^2} - 1.8 = 1 > 0\) nên phương trình có 2 nghiệm phân biệt: \(\left[ {\begin{array}{*{20}{l}}{{x_1} = 3 + 1 = 4}\\{{x_2} = 3 - 1 = 2}\end{array}} \right.\). Vậy khi m = 3 thì tập nghiệm của phương trình (1) là \(S = \left\{ {2;4} \right\}\). b) Tìm tất cả các giá trị của m để phương trình (1) có 2 nghiệm phân biệt \({x_1},{\mkern 1mu} {\mkern 1mu} {x_2}\) thoả mãn \(\sqrt {{x_1}} {\rm{ \;}} + \sqrt {{x_2}} {\rm{ \;}} = 3\sqrt 2 \) Để phương trình (1) có 2 nghiệm phân biệt \({x_1},{\mkern 1mu} {\mkern 1mu} {x_2}\) thoả mãn \(\sqrt {{x_1}} {\rm{ \;}} + \sqrt {{x_2}} {\rm{ \;}} = 3\sqrt 2 \) thì \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{{x_1} \ge 0}\\{{x_2} \ge 0}\\{\sqrt {{x_1}} + \sqrt {{x_2}} = 3\sqrt 2 }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 4m + 4 > 0}\\{{x_1} + {x_2} \ge 0}\\{{x_1}{x_2} \ge 0}\\{{{\left( {\sqrt {{x_1}} + \sqrt {{x_2}} } \right)}^2} = 18}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( {m - 2} \right)}^2} > 0}\\{2m \ge 0}\\{4m - 4 \ge 0}\\{{x_1} + {x_2} + 2\sqrt {{x_1}{x_2}} = 18}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m - 2 \ne 0}\\{m \ge 0}\\{m \ge 1}\\{2m + 2\sqrt {4m - 4} = 18}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ge 1,{\mkern 1mu} {\mkern 1mu} m \ne 2}\\{m + 2\sqrt {m - 1} = 9{\mkern 1mu} {\mkern 1mu} \left( * \right)}\end{array}} \right.} \right.\) Đặt \(t = \sqrt {m - 1} {\mkern 1mu} {\mkern 1mu} \left( {t \ge 0,{\mkern 1mu} {\mkern 1mu} t \ne 1} \right)\) \( \Rightarrow {t^2} = m - 1 \Leftrightarrow m = {t^2} + 1\) Khi đó phương trình (*) trở thành \({t^2} + 1 + 2t = 9 \Leftrightarrow {t^2} + 2t - 8 = 0\). Ta có \(\Delta {'_t} = {1^2} - \left( { - 8} \right) = 9 > 0\) nên phương trình (*) có 2 nghiệm phân biệt \(\left[ {\begin{array}{*{20}{l}}{{t_1} = {\rm{ \;}} - 1 + 3 = 2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\\{{t_1} = {\rm{ \;}} - 1 - 3 = {\rm{ \;}} - 4{\mkern 1mu} \left( {Ktm} \right)}\end{array}} \right.\) Với \(t = 2 \Rightarrow \sqrt {m - 1} {\rm{ \;}} = 2 \Leftrightarrow m - 1 = 4 \Leftrightarrow m = 5{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)\). Vậy m = 5.Câu 3 (VD): Phương pháp: Gọi thời gian để đội thứ nhất làm riêng xong công việc là \(x\) (ngày, \(x \in \mathbb{N},x > 12\)) Biểu diễn thời gian mỗi ngày từng đội làm được theo x, lập phương trình tìm x.Cách giải: Gọi thời gian để đội thứ nhất làm riêng xong công việc là \(x\) (ngày, \(x \in \mathbb{N},x > 12\)) Khi làm riêng, để hoàn thành công việc trên thì đội thứ nhất cần nhiều thời gian hơn đội thứ hai là 10 ngày nên thời gian để đội thứ hai làm riêng xong công việc là \(x - 10\) (ngày) Mỗi ngày đội thứ nhất làm được: \(\frac{1}{x}\) (công việc) Mỗi ngày đội thứ hai làm được: \(\frac{1}{{x - 10}}\) (công việc) Mỗi ngày cả hai đội làm được \(\frac{1}{{12}}\) (công việc) Khi đó ta có phương trình: \(\frac{1}{x} + \frac{1}{{x - 10}} = \frac{1}{{12}}\) \(\begin{array}{*{20}{l}}{ \Leftrightarrow \frac{{12\left( {x - 10} \right)}}{{12x\left( {x - 10} \right)}} + \frac{{12x}}{{12x\left( {x - 10} \right)}} = \frac{{x\left( {x - 10} \right)}}{{12x\left( {x - 10} \right)}}}\\{ \Rightarrow 12\left( {x - 10} \right) + 12x = x\left( {x - 10} \right)}\\{ \Leftrightarrow 12x - 120 + 12x = {x^2} - 10x}\\{ \Leftrightarrow {x^2} - 34x + 120 = 0}\\{ \Leftrightarrow {x^2} - 30x - 4x + 120 = 0}\\{ \Leftrightarrow x\left( {x - 30} \right) - 4\left( {x - 30} \right) = 0}\\{ \Leftrightarrow \left( {x - 30} \right)\left( {x - 4} \right) = 0}\\{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - 30 = 0}\\{x - 4 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 30{\mkern 1mu} {\mkern 1mu} ({\rm{TM}})}\\{x = 4{\mkern 1mu} {\mkern 1mu} ({\rm{KTM}})}\end{array}} \right.}\end{array}\) Vậy đội thứ nhất làm xong công việc trong 30 ngày, đội thứ hai làm xong công việc là 20 ngày.Câu 4 (VD): Phương pháp: 1. Áp dụng công thức tính thể tích hình nón, hình trụ 2. a) Tổng hai góc đối diện bằng \({180^0}\) b) Chứng minh \(\Delta CKN\) và \(\Delta CMA\) đồng dạng c) Chứng minh \(\angle NFK = \angle NKF\) từ đó suy ra tam giác cân.Cách giải: Cách giải: 1. Một dụng cụ gồm hai phần: một phần có dạng hình trụ, phần còn lại có dạng hình nón với các kích thước cho như hình vẽ bên.Câu 5 (VDC): Phương pháp: 1. Phân tích biểu thức về dạng \(f\left( x \right).g\left( x \right) = m\) 2. Chứng minh \(\sqrt {2{a^2} + 3ab + 2{b^2}} {\rm{ \;}} = \sqrt {\frac{7}{4}{{\left( {a + b} \right)}^2} + \frac{1}{4}{{\left( {a - b} \right)}^2}} {\rm{ \;}} \ge \frac{{\sqrt 7 }}{2}\left( {a + b} \right)\)Cách giải: 1. Tìm tất cả các cặp số nguyên (x;y) thoả mãn \(2{x^2} - x{y^2} - 2x + {y^2} + 5 = 0\). Ta có: \(\begin{array}{*{20}{l}}{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} 2{x^2} - x{y^2} - 2x + {y^2} + 5 = 0}\\{ \Leftrightarrow \left( {2{x^2} - 2x} \right) - \left( {x{y^2} - {y^2}} \right) = {\rm{ \;}} - 5}\\{ \Leftrightarrow 2x\left( {x - 1} \right) - {y^2}\left( {x - 1} \right) = {\rm{ \;}} - 5}\\{ \Leftrightarrow \left( {x - 1} \right)\left( {2x - {y^2}} \right) = {\rm{ \;}} - 5}\end{array}\) Vì \(x,{\mkern 1mu} {\mkern 1mu} y\) là số nguyên nên \(x - 1\) và \(2x - {y^2}\) cũng là số nguyên Do đó \(\left( {x - 1} \right)\left( {2x - {y^2}} \right) = {\rm{ \;}} - 5\) ta xét các trường hợp sau: TH1: \(\left\{ {\begin{array}{*{20}{l}}{x - 1 = 5}\\{2x - {y^2} = {\rm{ \;}} - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 6}\\{12 - {y^2} = {\rm{ \;}} - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 6}\\{{y^2} = 13{\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)}\end{array}} \right.\). TH2: \(\left\{ {\begin{array}{*{20}{l}}{x - 1 = {\rm{ \;}} - 5}\\{2x - {y^2} = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = {\rm{ \;}} - 4}\\{ - 8 - {y^2} = {\rm{ \;}} - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = {\rm{ \;}} - 4}\\{{y^2} = {\rm{ \;}} - 7{\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)}\end{array}} \right.\). TH3: \(\left\{ {\begin{array}{*{20}{l}}{x - 1 = 1}\\{2x - {y^2} = {\rm{ \;}} - 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{4 - {y^2} = {\rm{ \;}} - 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{{y^2} = 9 \Leftrightarrow y = {\rm{ \;}} \pm 3{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\end{array}} \right.\) TH4: \(\left\{ {\begin{array}{*{20}{l}}{x - 1 = {\rm{ \;}} - 1}\\{2x - {y^2} = 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0}\\{{y^2} = {\rm{ \;}} - 5{\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)}\end{array}} \right.\). Vậy có 2 cặp số nguyên (x;y) thoả mãn là (2;3) và (2;-3). 2. Biết a, b, c là ba số thực dương thoả mãn điều kiện: \(\sqrt a {\rm{ \;}} + \sqrt b {\rm{ \;}} + \sqrt c {\rm{ \;}} = 3\). Chứng minh \(\sqrt {2{a^2} + 3ab + 2{b^2}} {\rm{ \;}} + \sqrt {2{b^2} + 3bc + 2{c^2}} {\rm{ \;}} + \sqrt {2{c^2} + 3ca + 2{a^2}} {\rm{ \;}} \ge 3\sqrt 7 \). Ta có: \(\sqrt {2{a^2} + 3ab + 2{b^2}} {\rm{ \;}} = \sqrt {\frac{7}{4}{{\left( {a + b} \right)}^2} + \frac{1}{4}{{\left( {a - b} \right)}^2}} {\rm{ \;}} \ge \frac{{\sqrt 7 }}{2}\left( {a + b} \right)\) Tuơng tự ta có: \(\begin{array}{*{20}{l}}{\sqrt {2{b^2} + 3bc + 2{c^2}} {\rm{ \;}} \ge \frac{{\sqrt 7 }}{2}\left( {b + c} \right)}\\{\sqrt {2{c^2} + 3ca + 2{a^2}} {\rm{ \;}} \ge \frac{{\sqrt 7 }}{2}\left( {c + a} \right)}\end{array}\) Cộng vế theo vế 3 bất phương trình ta được: \(\begin{array}{*{20}{l}}{\sqrt {2{a^2} + 3ab + 2{b^2}} {\rm{ \;}} + \sqrt {2{b^2} + 3bc + 2{c^2}} {\rm{ \;}} + \sqrt {2{c^2} + 3ca + 2{a^2}} {\rm{ \;}} \ge \frac{{\sqrt 7 }}{2}\left( {a + b + b + c + c + a} \right)}\\{ \Rightarrow \sqrt {2{a^2} + 3ab + 2{b^2}} {\rm{ \;}} + \sqrt {2{b^2} + 3bc + 2{c^2}} {\rm{ \;}} + \sqrt {2{c^2} + 3ca + 2{a^2}} {\rm{ \;}} \ge \sqrt 7 \left( {a + b + c} \right) = 3\sqrt 7 {\mkern 1mu} {\mkern 1mu} \left( {dpcm} \right)}\end{array}\) Dấu “=” xảy ra \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a - b = 0}\\{b - c = 0}\\{c - a = 0}\\{\sqrt a {\rm{ \;}} + \sqrt b {\rm{ \;}} + \sqrt c {\rm{ \;}} = 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = b = c}\\{3\sqrt a {\rm{ \;}} = 3}\end{array}} \right. \Leftrightarrow a = b = c = 1\).
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |