Đề thi vào 10 môn Toán Nghệ An năm 2023Tải về Câu 1: a) Tính \(A = \sqrt 4 + \sqrt {49} + \sqrt {64} \). b) Rút gọn biểu thức \(P = \left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right) \cdot \frac{{4x}}{{x - 1}}\), với \(x > 0\) và \(x \ne 1\). c) Tìm giá trị của \({\rm{b}}\) để đường thẳng \({\rm{y}} = 2{\rm{x}} + {\rm{b}} - 1\) cắt trục hoành tại điểm có hoành độ bằng 1 .
Toán - Văn - Anh
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tải về
Đề bài Câu 1: a) Tính \(A = \sqrt 4 + \sqrt {49} + \sqrt {64} \). b) Rút gọn biểu thức \(P = \left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right) \cdot \frac{{4x}}{{x - 1}}\), với \(x > 0\) và \(x \ne 1\). c) Tìm giá trị của \({\rm{b}}\) để đường thẳng \({\rm{y}} = 2{\rm{x}} + {\rm{b}} - 1\) cắt trục hoành tại điểm có hoành độ bằng 1 .Câu 2: a) Giải phương trình \({x^2} + 3x - 10 = 0\). b) Cho biết phương trình \({x^2} - 5x + 3 = 0\) có hai nghiệm dương phân biệt \({x_1},{x_2}\). Không giải phương trình, tính giá trị của biểu thức \({\rm{T}} = \frac{{\left( {{{\rm{x}}_1} + 1} \right)\left( {{{\rm{x}}_2} + 1} \right)}}{{{\rm{x}}_1^2 + 5{{\rm{x}}_2}}}\).Câu 3: a) Một cừa hàng kinh doanh xe đạp nhập về một lô hàng gồm hai loại: loại I có giá 2 triệu đồng/xe và loại II có giá 6 triệu dồng/xe. Biết rằng lô hàng nói trên có 50 xe với tổng số tiền mà cửa hàng phài thanh toán là 160 triệu đồng. Hòi cửa hàng đã nhập về bao nhiêu xe loại I và bao nhiêu xe loại II? b) Bạn An bỏ một viên bi đặc không thấm nước vào một lọ thủy tinh chứa nước dạng hình trự có bán kinh đường tròn đáy bằng \(1,5{\rm{\;cm}}\). Biết rằng khi viên bi chìm hoàn toàn trong nước thì nước trong lọ dâng lên thêm \(0,5{\rm{\;cm}}\). Tính thể tích viên bi bạn An dã bỏ vào lọ thủy tinh (cho \(\pi = 3,14\); xem độ dày của lọ không dáng kể và nước trong lọ không thất thoát ra ngoài).Câu 4: Cho tam giác nhọn \({\rm{ABC}}({\rm{AB}} < {\rm{AC}})\), các đường cao \({\rm{♈AD}},{\rm{BE}},{\rm{CF}}({\rm{D}} \in {\rm{BC}}\), \({\rm{E}} \in {\rm{AC}},{\rm{F}} \in {\rm{AB}})\) cắt nhau tại \({\rm{H}}\). a) Chứng minh \({\rm{AEHF}}\) là tứ giác nội tiếp. b) Gọi \({\rm{O}}\) là trung diểm của đoạn thẳng \({\rm{BC}},{\rm{M}}\) là giao điểm của tia \({\rm{EF}}\) và tia \({\rm{CB}}\). Chứng minh rằng \(\widehat {{\rm{FAD}}} = \widehat {{\rm{OFC}}}\) và \({\rm{O}}{{\rm{C}}^2} = {\rm{OD}} \cdot {\rm{OM}}\). c) Chứng minh rằng hai đường thẳng \({\rm{MH}}\) và \({\rm{AO}}\) vuông góc với nhau.Câu 5: Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = 4\,\,\,}\\{x\sqrt {{y^2} + 1} + y\sqrt {{x^2} + 1} = {x^2}{y^2} - 1\,\,}\end{array}} \right.\) \((x,y \in \mathbb{R})\) -----HẾT----- Lời giải chi tiết Câu 1 (TH): Phương pháp: a) Khai căn và thực hiện phép tính. b) Quy đồng và rút gọn. c) Tìm giao điểm của đường thẳng và trục hoành từ đó thay vào đường thẳng để tìm giá trị b.Cách giải: a) Tính \(A = \sqrt 4 + \sqrt {49} + \sqrt {64} \) \(\begin{array}{l}A = \sqrt 4 + \sqrt {49} + \sqrt {64} \\A = \sqrt {{2^2}} + \sqrt {{7^2}} + \sqrt {{8^2}} \\A = 2 + 7 + 8\\A = 17\end{array}\) Vậy A = 17. b) Rút gọn biểu thức \(P = \left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right).\frac{{4x}}{{x - 1}}\) với \(x > 0\) và \(x \ne 1\). Với \(x > 0,\,\,x \ne 1\) ta có: \(\begin{array}{l}P = \left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right).\frac{{4x}}{{x - 1}}\\P = \frac{{x - 1}}{{2\sqrt x }}.\frac{{4x}}{{x - 1}}\\P = \frac{{x - 1}}{{2\sqrt x }}.\frac{{2.2{{\left( {\sqrt x } \right)}^2}}}{{x - 1}}\\P = 2\sqrt x \end{array}\) Vậy với \(x > 0,\,\,x \ne 1\) thì \(P = 2\sqrt x \). c) Tìm giá trị của b để đường thẳng \(y = 2x + b - 1\) cắt trục hoành tại điểm có hoành độ bằng 1. Đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 1 => Đường thẳng d đi qua điểm A(1;0). Thay x = 1 và y = 0 vào phương trình đường thẳng d ta có: \(0 = 2.1 + b - 1 \Leftrightarrow b + 1 = 0 \Leftrightarrow b = - 1.\) Vậy b = -1.Câu 2 (VD): Phương pháp: a) Tính \(\Delta \) và suy ra nghiệm của phương trình. b) Áp dụng hệ thức vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}.{x_2} = \frac{c}{a}\end{array} \right.\)Cách giải: a) Giải phương trình \({x^2} + 3x - 10 = 0\) Ta có: \(\Delta = {3^2} - 4.1.\left( { - 10} \right) = 49 > 0\) Suy ra phương trình có hai nghiệm phân biệt là: \(\left[ \begin{array}{l}{x_1} = \frac{{ - 3 + \sqrt {49} }}{2} = \frac{{ - 3 + 7}}{2} = 2\\{x_2} = \frac{{ - 3 - \sqrt {49} }}{2} = \frac{{ - 3 - 7}}{2} = - 5\end{array} \right.\) Vậy tập nghiệm của phương trình là: \(S = \left\{ {2; - 5} \right\}\). b) Cho biết phương trình \({x^2} - 5x + 3 = 0\) có hai nghiệm dương phân biệt \({x_1},{x_2}\). Không giải phương trình, tính giá trị của biểu thức \(T = \frac{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}{{x_1^2 + 5{x_2}}}\) Vì \({x_1}\) là nghiệm của phương trình nên \(x_1^2 - 5{x_1} + 3 = 0 \Leftrightarrow x_1^2 = 5{x_1} - 3\). Theo bài ra, ta có:\(T = \frac{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}{{x_1^2 + 5{x_2}}} = \frac{{{x_1}.{x_2} + {x_1} + {x_2} + 1}}{{5{x_1} + 5{x_2} - 3}} = \frac{{{x_1}.{x_2} + {x_1} + {x_2} + 1}}{{5\left( {{x_1} + {x_2}} \right) - 3}}\) Theo hệ thức Vi-ét, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 5\\{x_1}.{x_2} = 3\end{array} \right.\) Suy ra: \(T = \frac{{3 + 5 + 1}}{{5.5 - 3}} = \frac{9}{{22}}\). Vậy \(T = \frac{9}{{22}}.\)Câu 3 (VD): Phương pháp: a)Cách giải: a) Gọi số xe loại I cửa hàng nhập về là x (\(x \in {\mathbb{N}^*}\), xe) (x < 50). Do lô hàng có tổng 50 xe nên số xe loại II là 50 – x (xe) Tổng số tiền mua xe loại I là 2x (triệu đồng) Tổng số tiền mua xe loại II là \(6\left( {50 - x} \right)\) (triệu đồng) Do tổng số tiền mà cửa hàng phải thanh toán là 160 triệu đồng nên ta có phương trình: \(\begin{array}{l}2x + 6\left( {50 - x} \right) = 160\\ \Leftrightarrow 2x + 300 - 6x = 160\\ \Leftrightarrow - 4x = - 140\\ \Leftrightarrow x = 35\left( {TM} \right)\end{array}\) Vậy cửa hàng đã nhập về 35 xe loại I và 50 – 35 = 15 xe loại II b) Thể tích của phần nước dâng lên trong bình hình trụ là thể tích của viên bi và bằng \(\pi .{r^2}.h = 3,14.1,{5^2}.0,5 = 3,5325\,\,\left( {c{m^3}} \right)\) Vậy thể tích viên bi là 3,5325 \(c{m^3}\).Câu 4 (VD): Phương pháp: Cách giải: \( \Rightarrow \angle ODF = \angle OFM\). Câu 5 (VD): Phương pháp: Cách giải: \(\left\{ {\begin{array}{*{20}{l}}{\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)}\\{x\sqrt {{y^2} + 1} + y\sqrt {{x^2} + 1} = {x^2}{y^2} - 1\,\,\,(2)}\end{array}} \right.\) \(\begin{array}{l}\left( 1 \right) \Leftrightarrow 4 = {x^2} + {y^2} + 1 + {x^2}{y^2} \ge 2xy + {x^2}{y^2} + 1 = {(xy + 1)^2}\\ \Rightarrow - 2 \le xy + 1 \le 2 \Leftrightarrow - 3 \le xy \le 1\end{array}\). Bình phương hai vế của phương trình (2) ta được: \({x^2}\left( {{y^2} + 1} \right) + 2xy\sqrt {\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)} + {y^2}\left( {{x^2} + 1} \right) = {x^4}{y^4} - 2{x^2}{y^2} + 1\) \( \Leftrightarrow {x^2}{y^2} + {x^2} + {y^2} + {x^2}{y^2} + 2xy\sqrt {\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)} = {x^4}{y^4} - 2{x^2}{y^2} + 1\) \( \Leftrightarrow 3 + {x^2}{y^2} + 2xy.2 = {x^4}{y^4} - 2{x^2}{y^2} + 1\) \( \Leftrightarrow {x^4}{y^4} - 3{x^2}{y^2} - 4xy - 2 = 0\) (3) Đặt \(a = xy \Rightarrow - 3 \le a \le 1\). Khi đó phương trình (3) trở thành: \(\begin{array}{l}{a^4} - 3{a^2} - 4a - 2 = 0\\ \Leftrightarrow {a^4} + {a^3} - {a^3} - {a^2} - 2{a^2} - 2a - 2a - 2 = 0\\ \Leftrightarrow {a^3}\left( {a + 1} \right) - {a^2}\left( {a + 1} \right) - 2a\left( {a + 1} \right) - 2\left( {a + 1} \right) = 0\\ \Leftrightarrow (a + 1)\left( {{a^3} - {a^2} - 2a - 2} \right) = 0\end{array}\) \( \Leftrightarrow \left[ \begin{array}{l}a + 1 = 0\\{a^3} - {a^2} - 2a - 2 = 0\end{array} \right.\) TH1: \(a + 1 = 0 \Leftrightarrow a = - 1\,\,\left( {tm} \right)\) \( \Rightarrow xy = - 1 \Rightarrow y = - \frac{1}{x}\) (do \(x = 0\) không là nghiệm của phương trình) Thay vào (1) ta được: \(\begin{array}{l}\left( {{x^2} + 1} \right)\left( {\frac{1}{{{x^2}}} + 1} \right) = 4 \Leftrightarrow \frac{{{{\left( {{x^2} + 1} \right)}^2}}}{{{x^2}}} = 4\\ \Leftrightarrow {\left( {{x^2} + 1} \right)^2} = 4{x^2} \Leftrightarrow \left[ \begin{array}{l}{x^2} + 1 = 2x\\{x^2} + 1 = - 2x\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{\left( {x - 1} \right)^2} = 0\\{\left( {x + 1} \right)^2} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1 \Rightarrow y = - 1\\x = - 1 \Rightarrow y = 1\end{array} \right.\end{array}\) TH2: \({a^3} - {a^2} - 2a - 2 = 0 \Leftrightarrow {a^3} - 1 = {a^2} + 2a + 1 \Leftrightarrow {a^3} - 1 = {\left( {a + 1} \right)^2}\) Vì \(a \le 1\) nên \({a^3} \le 1 \Leftrightarrow {a^3} - 1 \le 0\) mà \({\left( {a + 1} \right)^2} \ge 0\) nên \({a^3} - 1 = {\left( {a + 1} \right)^2} \Leftrightarrow \left\{ \begin{array}{l}a - 1 = 0\\a + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\a = 1\end{array} \right.\) (vô lý). => Phương trình vô nghiệm. Vậy hệ phương trình có 2 nghiệm là \(\left( {x;y} \right) = \left( { - 1;1} \right)\) hoặc \(\left( {x;y} \right) = \left( {1; - 1} \right)\).-----HẾT-----
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |