Đề thi vào 10 môn Toán Hà Nội năm 2017Tải về Bài I (2,0 điểm) Cho hai biểu thức
Toán - Văn - Anh
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tải về
Đề bài Bài I (2,0 điểm) Cho hai biểu thức \(A = \dfrac{{\sqrt x + 2}}{{\sqrt x - 5}}\) và \(B = \dfrac{3}{{\sqrt x + 5}} + \dfrac{{20 - 2\sqrt x }}{{x - 25}}\), với \(x \ge 0,x \ne 25.\) 1) Tính giá trị của biểu thức A khi x = 9. 2) Chứng minh \(B = \dfrac{1}{{\sqrt x - 5}}\). 3) Tìm tất cả các giá trị của x để \(A = B.\left| {x - 4} \right|\).Bài II(2,0 điểm) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình Một xe ô tô và xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 120 km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10 km/h nên xe ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của mỗi xe.Bài III(2 điểm) 1) Giải hệ phương trình: \(\left\{ \begin{array}{l}\sqrt x + 2\sqrt {y - 1} = 5\\4\sqrt x - \sqrt {y - 1} = 2\end{array} \right.\). 2) Trong mặt phẳng toạ độ \(Oxy\), cho đường thẳng (d): \(y = mx + 5\).a) Chứng minh đường thẳng (d) luôn đi qua điểm A(0; 5) với mọi giá trị của m. b) Tìm tất cả các giá trị của m✤ để đường thẳng (d) cắt parabol (P): \(y = {x^2}\) tại hai điểm phân biệt có hoành độ lần lượt là \({x_1};\,\,{x_2}\)(với \({x_1} < {x_2}\)) sao cho \(\left| {{x_1}} \right| > \left| {{x_2}} \right|\). Bài IV(3,5 điểm) Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN Cắt các cạnh AB và BC lần lươt tại các điểm H và K.1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn. 2) Chứng minh \(N{B^2} = NK.NM\) 3) Chứng minh tứ giác BHIK là hình thoi 4) Gọi P, Q lần lượt là tâm của các đường tròn ngọai tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng. Bài V(0,5 điểm) Cho các số thực a, b, c thay đổi luôn thỏa mãn: \(a \ge 1,b \ge 1,c \ge 1\) \(ab + bc + ca = 9\) . Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức \(P = {a^2} + {b^2} + {c^2}\) .Lời giải chi tiết
Hướng dẫn giải: 1) Khi x = 9 ta có: \(A = \dfrac{{\sqrt 9 + 2}}{{\sqrt 9 - 5}} = \dfrac{{\sqrt {{3^2}} + 2}}{{\sqrt {{3^2}} - 5}} = \dfrac{{3 + 2}}{{3 - 5}} = - \dfrac{5}{2}\) 2) Với \(x \ge 0,x \ne 25.\) \(\begin{array}{l}B = \dfrac{3}{{\sqrt x + 5}} + \dfrac{{20 - 2\sqrt x }}{{x - 25}}\\ = \dfrac{{3\left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}} + \dfrac{{20 - 2\sqrt x }}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}\\ = \dfrac{{3\left( {\sqrt x - 5} \right) + 20 - 2\sqrt x }}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}\\ = \dfrac{{3\sqrt x - 15 + 20 - 2\sqrt x }}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}\\ = \dfrac{{\sqrt x + 5}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}\\ = \dfrac{1}{{\sqrt x - 5}}\end{array}\) Ta có điều phải chứng minh. 3) với \(x \ge 0,x \ne 25.\) \(A = B.\left| {x - 4} \right|\) \(\begin{array}{l} \Leftrightarrow \dfrac{{\sqrt x + 2}}{{\sqrt x - 5}} = \dfrac{1}{{\sqrt x - 5}}\left| {x - 4} \right|\\ \Leftrightarrow \sqrt x + 2 = \left| {x - 4} \right|(1)\end{array}\) TH1: Nếu \(x \ge 4,x \ne 25\) ta được (1) trở thành: \(\sqrt x + 2 = x - 4 \Leftrightarrow x - \sqrt x - 6 = 0 \Leftrightarrow \left( {\sqrt x + 2} \right)\left( {\sqrt x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sqrt x = 3 \Leftrightarrow x = 9(tm)\\\sqrt x = - 2(ktm)\end{array} \right.\) TH2: Nếu \(0 \le x < 4\) ta được (1) trở thành: \(\sqrt x + 2 = - x + 4 \Leftrightarrow x + \sqrt x - 2 = 0 \Leftrightarrow \left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sqrt x = 1 \Leftrightarrow x = 1(tm)\\\sqrt x = - 2(ktm)\end{array} \right.\) Vậy x = 9, x = 1 thỏa mãn yêu cầu bài toán.
Hướng dẫn giải. Cách 1: Gọi vận tốc của ô tô là x (km/h) (ĐK: x>10 ) Do vận tốc của ô tô lớn hớn vận tốc cả xe máy là 10 km/h nên vận tốc của xe máy là x-10 (km/h) Thời gian ô tô đi từ A đến B là \(\dfrac{{120}}{x}\) (h) Thời gian xe máy đi từ A đến B là \(\dfrac{{120}}{{x - 10}}\) (h) Vì ô tô đến B sớm hơn xe máy 36 phút =\(\dfrac{3}{5}\) giờ nên ta có phương trình: \(\begin{array}{l}\dfrac{{120}}{{x - 10}} - \dfrac{{120}}{x} = \dfrac{3}{5}\,\, \Leftrightarrow 120\left( {\dfrac{1}{{x - 10}} - \dfrac{1}{x}} \right) = \dfrac{3}{5} \Leftrightarrow \dfrac{1}{{x - 10}} - \dfrac{1}{x} = \dfrac{1}{{200}}\\ \Leftrightarrow \dfrac{{x - x + 10}}{{\left( {x - 10} \right)x}} = \dfrac{1}{{200}}\\ \Rightarrow x\left( {x - 10} \right) = 2000 \Leftrightarrow {x^2} - 10x - 2000 = 0\\ \Leftrightarrow \left( {x - 50} \right)\left( {x + 40} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 50(tmdk)\\x = - 40(ktmdk)\end{array} \right.\end{array}\) Vậy vận tốc của ô tô là 50 km/h và vận tốc của xe máy là 40 km/h.Cách 2: Gọi vận tốc của ô tô là x, vận tốc của xe máy là y (km/h) (ĐK: x>10; y>0 ) Do vận tốc của ô tô lớn hơn vận tốc cả xe máy là 10 km/h nên ta có phương trình \(x - y = 10\,\,\,\,(1)\) Thời gian ô tô đi từ A đến B là \(\dfrac{{120}}{x}\) (h) Thời gian xe máy đi từ A đến B là \(\dfrac{{120}}{y}\) (h) Vì ô tô đến B sớm hơn xe máy 36 phút =\(\dfrac{3}{5}\) giờ nên ta có phương trình: \(\dfrac{{120}}{y} - \dfrac{{120}}{x} = \dfrac{3}{5}\,\,\,(2)\) Từ (1) và (2) ta có hệ phương trình: \(\begin{array}{l}\left\{ \begin{array}{l}x - y = 10\\\dfrac{{120}}{y} - \dfrac{{120}}{x} = \dfrac{3}{5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - y = 10\\120\left( {\dfrac{1}{y} - \dfrac{1}{x}} \right) = \dfrac{3}{5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - y = 10\\\dfrac{1}{y} - \dfrac{1}{x} = \dfrac{1}{{200}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x - y = 10\\\dfrac{{x - y}}{{xy}} = \dfrac{1}{{200}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - y = 10\\xy = 2000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10 + y\\\left( {10 + y} \right)y = 2000\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 10 + y\\{y^2} + 10y - 2000 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10 + y\\\left[ \begin{array}{l}y = 40\,\,\,\,\,\,(tm)\\y = - 50\,\,\,(ktm)\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\y = 40\end{array} \right.(tm)\end{array}\) Vậy vận tốc của ô tô là 50 km/h và vận tốc của xe máy là 40 km/h.
Hướng dẫn giải: 1) ĐKXĐ: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 1\end{array} \right.\). Đặt \(\left\{ \begin{array}{l}\sqrt x = a \ge 0\\\sqrt {y - 1} = b \ge 0\end{array} \right.\). Khi đó ta có hệ phương trình: \(\left\{ \begin{array}{l}a + 2b = 5\\4a - b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 5 - 2b\\4\left( {5 - 2b} \right) - b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 5 - 2b\\9b = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 5 - 2b\\b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\left( {tm} \right)\\b = 2\left( {tm} \right)\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\sqrt x = 1\\\sqrt {y - 1} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y - 1 = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\left( {tm} \right)\\y = 5\left( {tm} \right)\end{array} \right.\) Vậy hệ phương trình có nghiệm duy nhất: \(\left( {x;y} \right) = \left( {1;5} \right)\). 2) Ta có: (d): \(y = mx + 5\). a) Thay tọa độ điểm A(0; 5) vào (d) ta được: 5 = m. 0 + 5 ( luôn đúng)Vậy đường thẳng (d) luôn đi qua điểm A(0; 5) với mọi giá trị của m. b) Phương trình hoành độ giao điểm của (d) và (P) là: \({x^2} = mx + 5 \Leftrightarrow {x^2} - mx - 5 = 0\) (*) Đường thẳng (d) cắt (P) tại hai điểm phân biệt \( \Leftrightarrow \) phương trình (*) có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0 \Leftrightarrow {m^2} + 20 > 0\,\,\,\forall m\)Vậy đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt \({x_1};\,\,{x_2}\) với mọi m. Theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}{x_2} = - 5\end{array} \right.\) Vì a.c < 0 nên phương trình luôn có 2 nghiệm phân biệt trái dấu \({x_1} < 0 < \,{x_2}\) Để \(\left| {{x_1}} \right| > \left| {{x_2}} \right|\) thì \({x_1} + \,{x_2} < 0 \Leftrightarrow m < 0\) Vậy \(m < 0\) thỏa mãn điều kiện bài toán.
Mà BN ⊥ BD do góc DBN = 90o (góc nội tiếp chắn nửa đường tròn) ⇒ B, P, D thẳng hàng Tương tự ta có C, Q, D thẳng hàng ∆ PBK và ∆ DBC là 2 tam giác cân có chung góc ở đáy nên góc ở đỉnh của chúng bằng nhau ⇒ góc BPK = góc BDC ⇒ PK // DC ⇒ PK // DQ Tương tự ta có DP // QK Vậy DPKQ là hình bình hành ⇒ DK đi qua trung điểm PQ ⇒ D, E, K thẳng hàng.
Hướng dẫn giải + Áp dụng bất đẳng thức Côsi cho 2 số dương ta có \(\left\{ \begin{array}{l}{a^2} + {b^2} \ge 2ab\\{b^2} + {c^2} \ge 2bc\\{c^2} + {a^2} \ge 2ca\end{array} \right. \Rightarrow 2\left( {{a^2} + {b^2} + {c^2}} \right) \ge 2\left( {ab + bc + ca} \right)\) \( \Rightarrow P = {a^2} + {b^2} + {c^2} \ge ab + bc + ca = 9\) Dấu “=” xảy ra ⇔ \(\left\{ \begin{array}{l}a = b = c \ge 1\\ab + bc + ca = 9\end{array} \right. \Leftrightarrow a = b = c = \sqrt 3 \) + Vì \(\left\{ \begin{array}{l}a \ge 1\\b \ge 1\\c \ge 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\left( {a - 1} \right)\left( {b - 1} \right) \ge 0\\\left( {b - 1} \right)\left( {c - 1} \right) \ge 0\\\left( {c - 1} \right)\left( {a - 1} \right) \ge 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}ab - a - b + 1 \ge 0\\bc - b - c + 1 \ge 0\\ca - c - a + 1 \ge 0\end{array} \right.\) \(\begin{array}{l} \Rightarrow ab + bc + ca - 2\left( {a + b + c} \right) + 3 \ge 0\\ \Rightarrow a + b + c \le \dfrac{{ab + bc + ca + 3}}{2}\end{array}\) Vì \(a \le 1;b \le 1;c \le 1\) \( \Rightarrow 3 \le a + b + c \le \dfrac{{ab + bc + ca + 3}}{2} = 6\) \(\begin{array}{l} \Rightarrow {\left( {a + b + c} \right)^2} \le 36 \Rightarrow {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right) \le 36\\ \Rightarrow P \le 36 - 2\left( {ab + bc + ca} \right) = 18\end{array}\) Dấu “=” xảy ra ⇔ \(\left[ \begin{array}{l}a = b = 1,c = 4\\a = 4,b = c = 1\\a = c = 1,b = 4\end{array} \right.\) Vậy GTNN của P là 9, xảy ra khi và chỉ khi \(a = b = c = \sqrt 3 \); GTLN của P là 18, xảy ra khi và chỉ khi \(\left[ \begin{array}{l}a = b = 1,c = 4\\a = 4,b = c = 1\\a = c = 1,b = 4\end{array} \right.\).
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |