Đề thi vào 10 môn Toán Bình Dương năm 2021Tải về Câu 1 (1,5 điểm): Rút gọn các biểu thức sau:
Toán - Văn - Anh
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tải về
Đề bài Câu 1 (1,5 điểm): Rút gọn các biểu thức sau: 1) \(A = \sqrt {75} - 5\sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} \) 2) \(B = \dfrac{{\sqrt {10} - \sqrt 6 }}{{\sqrt 5 - \sqrt 3 }} - \dfrac{1}{{\sqrt 2 + 1}}\)Câu 2 (1,5 điểm): Cho hệ phương trình \(\left\{ \begin{array}{l}3x + 2y = 10\\2x - y = m\end{array} \right.\)(\(m\) là tham số) 1) Giải hệ phương trình khi \(m = 9\) 2) Tìm tất cả các giá trị của tham số \(m\) để hệ phương trình có nghiệm \(\left( {x,y} \right)\) thỏa mãn \(x > 0,\,\,y < 0\).Câu 3 (2,0 điểm): Cho Parabol \(\left( P \right):y = - {x^2}\) và đường thẳng \(\left( d \right):y = 5x + 6\) 1) Vẽ đồ thị \(\left( P \right)\). 2) Tìm tọa độ các giao điểm của \(\left( P \right)\) và \(\left( d \right)\) bằng phép tính. 3) Viết phương trình đường thẳng \(\left( {d'} \right)\) biết \(\left( {d'} \right)\) song song \(\left( d \right)\) và \(\left( {d'} \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ lần lượt là \({x_1},\,\,{x_2}\) sao cho \({x_1}.{x_2} = - 24\).Câu 4 (1,5 điểm): Một khu vườn hình chữ nhật có chiều dài gấp \(3\) lần chiều rộng. Người ta làm một lối đi xung quanh vườn (thuộc đất trong vườn) rộng 1,5m. Tính kích thước của vườn, biết rằng đất còn lại trong vườn để trồng trọt là \(4329\,{m^2}\). Câu 5 (3,5 điểm) Cho tam giác ABC vuông tại A (\(AB < AC\)) nội tiếp trong đường tròn tâm O. Dựng đường thẳng d đi qua A song song với BC, đường thẳng d’ qua C song song BA, gọi D là giao điểm của d và d’. Dựng AE vuông góc với BD (E nằm trên BD), F là giao điểm của BD với đường tròn (O). Chứng minh: 1) Tứ giác \(AECD\) nội tiếp được trong đường tròn. 2) \(\angle AOF = 2\angle CAE\) 3) Tứ giác AECF là hình bình hành. 4) \(DF.DB = 2A{B^2}\)Lời giải chi tiết
Phương pháp: a) Biến đổi biểu thức trong căn, khai phương và rút gọn biểu thức b) Trục căn thức ở mẫu, rút gọn biểu thứcCách giải: 1) \(A = \sqrt {75} - 5\sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} \) Ta có : \(\begin{array}{l}A = \sqrt {75} - 5\sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} \\\,\,\,\,\,\, = \sqrt {25.3} - 5\left| {1 - \sqrt 3 } \right|\\\,\,\,\,\,\, = 5\sqrt 3 - 5\left( {\sqrt 3 - 1} \right)\,\,\,\,\left( {do\,\,1 - \sqrt 3 < 0} \right)\\\,\,\,\,\,\, = 5\sqrt 3 - 5\sqrt 3 + 5\\\,\,\,\,\,\, = 5\end{array}\) Vậy \(A = 5\). 2) \(B = \dfrac{{\sqrt {10} - \sqrt 6 }}{{\sqrt 5 - \sqrt 3 }} - \dfrac{1}{{\sqrt 2 + 1}}\) Ta có: \(\begin{array}{l}B = \dfrac{{\sqrt {10} - \sqrt 6 }}{{\sqrt 5 - \sqrt 3 }} - \dfrac{1}{{\sqrt 2 + 1}}\\\,\,\,\, = \dfrac{{\sqrt 2 \left( {\sqrt 5 - \sqrt 3 } \right)}}{{\sqrt 5 - \sqrt 3 }} - \dfrac{{\sqrt 2 - 1}}{{\left( {\sqrt 2 + 1} \right)\left( {\sqrt 2 - 1} \right)}}\\\,\,\,\, = \sqrt 2 - \dfrac{{\sqrt 2 - 1}}{{2 - 1}}\\\,\,\,\, = \sqrt 2 - \left( {\sqrt 2 - 1} \right)\\\,\,\,\, = 1\end{array}\) Vậy \(B = 1\).
Phương pháp: 1) Phối hợp phương pháp cộng đại số và phương pháp thể để tìm nghiệm của hệ phương trình. 2) Vận dụng phương pháp thể để tìm được nghiệm \(x,y\) theo tham số \(m\), sau đó thay vào điều kiện \(x > 0,\,\,y < 0\) để giải tham số \(m\).Cách giải: 1) Với \(m = 9\) hệ phương trình trở thành: \(\left\{ \begin{array}{l}3x + 2y = 10\\2x - y = 9\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}3x + 2y = 10\\4x - 2y = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7x = 28\\y = 2x - 9\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 2.4 - 9 = - 1\end{array} \right.\) Vậy với \(m = 9\) hệ phương trình có nghiệm \(\left( {x,y} \right)\) là \(\left( {4, - 1} \right)\). 2) Ta có: \(\left\{ \begin{array}{l}3x + 2y = 10\\2x - y = m\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}3x + 2y = 10\,\,\,\,\,\,\left( 1 \right)\\y = 2x - m\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\) Thay \(\left( 2 \right)\) vào \(\left( 1 \right)\) ta được \(3x + 2\left( {2x - m} \right) = 10 \Leftrightarrow 3x + 4x - 2m = 10 \Leftrightarrow 7x = 2m + 10 \Leftrightarrow x = \dfrac{{2m + 10}}{7}\) Thay \(x = \dfrac{{2m + 10}}{7}\) vào \(\left( 2 \right)\) ta được \(y = 2.\dfrac{{2m + 10}}{7} - 9 = \dfrac{{4m - 43}}{7}\) Để \(x > 0,\,\,y < 0\) khi và chỉ khi \(\left\{ \begin{array}{l}\dfrac{{2m + 10}}{7} > 0\\\dfrac{{4m - 43}}{7} < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2m + 10 > 0\\4m - 43 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > - 5\\m < \dfrac{{43}}{4}\end{array} \right. \Leftrightarrow - 5 < m < \dfrac{{43}}{4}\). Vậy \( - 5 < m < \dfrac{{43}}{4}\) thỏa mãn yêu cầu bài toán.
Phương pháp: 1) Lập bảng giá trị 2) Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\), sau đó sử dụng công thức nghiệm của phương trình bậc hai một ẩn xác định nghiệm của phương trình. 3) Xác định dạng của phương trình của đường thẳng \(\left( {d'} \right)\), xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( {d'} \right)\), xác định điều kiên để phương trình có hai nghiệm phân biệt, áp dụng hệ thức Vi – ét, xác định \({x_1}{x_2}\) sau đó thay vào yêu cầu để bài.Cách giải: 1) Đồ thị hàm số \(y = - {x^2}\) đi qua gốc tọa độ \(O\), có bề lõm hướng xuống và nhận \(Oy\) làm trục đối xứng. Bảng giá trị:
Phương pháp: Gọi chiều rộng của khu vườn là \(x\), xác định chiều dài theo ẩn \(x\), lập phương trình, sử dụng công thức nghiệm của phương trình bậc hai một ẩn để xác định ẩn \(x\).Cách giải: Gọi chiều rộng của khu vườn là \(x\) (mét; \(x > 0\)). Vì chiều dài gấp \(3\) lần chiều rộng nên chiều dài của khu vườn là \(3x\,\,\left( m \right)\). Do lối đi xung quanh vườn (thuộc đất trong vườn) rộng 1,5m nên: Chiều dài phần đất để trồng trọt là: \(3x - 1,5.2 = 3x - 3\) (mét) Chiều rộng phần đất để trồng trọt là: \(x - 1,5.2 = x - 3\) (mét) Vì diện tích vườn để trồng trọt là \(4329\,{m^2}\) nên ta có phương trình: \(\left( {x - 3} \right)\left( {3x - 3} \right) = 4329\) \( \Leftrightarrow \left( {x - 3} \right)\left( {x - 1} \right) = 1443 \Leftrightarrow {x^2} - 4x + 3 = 1443 \Leftrightarrow {x^2} - 4x - 1440 = 0\). Ta có \(\Delta ' = {2^2} + 1440 = 1444 > 0\) nên phương trình có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = 2 + \sqrt {1444} = 40\,\,\,\,\,\,\,\,\left( {tm} \right)\\{x_2} = 2 - \sqrt {1444} = - 36\,\,\,\left( {ktm} \right)\end{array} \right.\) Vậy chiều rộng của khu vườn là 40 mét và chiều dài của khu vườn là 120 mét.
Phương pháp: 1) Vận dụng dấu hiệu nhận biết của tứ giác nội tiếp: Tứ giác có 2 đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau là tứ giác nội tiếp. 2) Vận dụng tính của góc trong tứ giác nội tiếp và góc ở tâm và góc nội tiếp cùng chắn một cung. 3) Sử dụng dấu hiệu nhận biết hình bình hành: tứ giác có các cặp cạnh đối song song với nhau là hình bình hành. 4) Vận dụng hệ thức lượng trong tam giác vuông.Cách giải:
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |