ftw bet

Câu 7 trang 100 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng :
Quảng cáo

Đề bài

Cho số thực \(x > -1\). Chứng minh rằng : \({\left( {1 + x} \right)^n} \ge 1 + nx\)   (1) Với mọi số nguyên dương n.

Lời giải chi tiết

+) Với \(n = 1\), ta có  \({\left( {1 + x} \right)^1} = 1 + x = 1 + 1.x\)Như vậy, ta có (1) đúng khi \(n = 1\)+) Giả sử đã có (1) đúng khi \(n = k, k \in \mathbb N^*\), tức là: \({\left( {1 + x} \right)^k} \ge 1 + kx\)  +) Ta sẽ chứng minh nó cũng đúng khi \(n = k + 1\).Thật vậy, từ giả thiết \(x > -1\) nên \((1+x)>0\)Theo giả thiết qui nạp, ta có : \({\left( {1 + x} \right)^k} \ge 1 + kx\)   (2)Nhân hai vế của (2) với \((1+x)\) ta được:

\(\eqalign{
& {\left( {1 + x} \right)^{k + 1}} \ge \left( {1 + x} \right)\left( {1 + kx} \right) \cr 
🙈& = 1 + x + kx + k{x^2}\cr&= 1 + \left( {k + 1} \right)x + k{x^2} \cr&\ge 1 + \left( {k + 1} \right)x \cr} \)

Từ các chứng minh trên suy ra (1) đúng với mọi \(n \in \mathbb N^*\).

ufa999.cc

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|