ftw bet

Câu 55 trang 177 SGK Đại số và Giải tích 11 Nâng cao

Tìm giới hạn của các dãy số (un) với
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tìm giới hạn của các dãy số (un) với

LG a

\({u_n} = {{2{n^3} - n - 3} \over {5n - 1}}\)

Phương pháp giải:

Chia cả tử và mẫu cho lũy thừa bậc cao nhất của n.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \lim {{2{n^3} - n - 3} \over {5n - 1}} \cr &= \lim {{{n^3}\left( {2 - {1 \over {{n^2}}} - {3 \over {{n^3}}}} \right)} \over {{n^3}\left( {{5 \over {{n^2}}} - {1 \over {{n^3}}}} \right)}} \cr 
& = \lim {{2 - {1 \over {{n^2}}} - {3 \over {{n^3}}}} \over {{5 \over {{n^2}}} - {1 \over {{n^3}}}}} = + \infty \cr 
🐓& \text{ vì }\,\lim \left( {2 - {1 \over {{n^2}}} - {3 \over {{n^3}}}} \right) = 2\cr &\text{ và }\,\lim \left( {{5 \over {{n^2}}} - {1 \over {{n^3}}}} \right) = 0;5n - 1 > 0 \cr} \)

LG b

\({u_n} = {{\sqrt {{n^4} - 2n + 3} } \over { - 2{n^2} + 3}}\)

Lời giải chi tiết:

\(\eqalign{
& \lim {{\sqrt {{n^4} - 2n + 3} } \over { - 2{n^2} + 3}} \cr &= \lim {{{n^2}\sqrt {1 - {2 \over {{n^3}}} + {3 \over {{n^4}}}} } \over {{n^2}\left( { - 2 + {3 \over {{n^2}}}} \right)}} \cr 
☂& = \lim {{\sqrt {1 - {2 \over {{n^3}}} + {3 \over {{n^4}}}} } \over { - 2 + {3 \over {{n^2}}}}}\cr &= - {1 \over 2} \cr} \)

LG c

 \({u_n} = - 2{n^2} + 3n - 7\)

Phương pháp giải:

Đặt lũy thừa bậc cao nhất của n ra làm nhân tử chung.

Lời giải chi tiết:

\(\eqalign{
& \lim \left( { - 2{n^2} + 3n - 7} \right) \cr &= \lim {n^2}\left( { - 2 + {3 \over n} - {7 \over {{n^2}}}} \right) = - \infty \cr 
꧅& \text{vì }\,\lim {n^2} = + \infty \,\text{ và }\cr &\lim \left( { - 2 + {3 \over n} - {7 \over {{n^2}}}} \right) = - 2 < 0 \cr} \)

LG d

\({u_n} = \root 3 \of {{n^9} + 8{n^2} - 7} \)

Lời giải chi tiết:

\(\eqalign{
& \lim \root 3 \of {{n^9} + 8{n^2} - 7} \cr &= \lim {n^3}.\root 3 \of {1 + {8 \over {{n^7}}} - {7 \over {{n^9}}}} = + \infty \cr 
𒅌& \text{ vì }\,\lim {n^3} = + \infty \cr &\text{ và }\,\lim \root 3 \of {1 + {8 \over {{n^7}}} - {7 \over {{n^9}}}} = 1 > 0 \cr} \)

ufa999.cc

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|