ftw bet

Câu 5 trang 91 SGK Hình học 11 Nâng cao

Trong không gian cho tam giác ABC.
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Trong không gian cho tam giác ABC.

LG a

 Chứng minh rằng nếu điểm M thuộc mp(ABC) thì có ba số x, y, z mà x + y + z = 1 sao cho \(\overrightarrow {OM}  = \overrightarrow {xOA}  + \overrightarrow {yOB}  + \overrightarrow {zOC} \) với mọi điểm O.

Giải chi tiết:

Vì \(\overrightarrow {AB} ,\overrightarrow {AC} \) là hai vecto không cùng phương nên điểm M thuộc mp(ABC) khi và chỉ khi có \(\overrightarrow {AM}  = l\overrightarrow {AB}  + m\overrightarrow {AC} \) hay \(\overrightarrow {OM}  - \overrightarrow {OA}  = l\left( {\overrightarrow {OB}  - \overrightarrow {OA} } \right) + m\left( {\overrightarrow {OC}  - \overrightarrow {OA} } \right)\) với mọi điểm O tức là \(\overrightarrow {OM}  = \left( {1 - l - m} \right)\overrightarrow {OA}  + l\overrightarrow {OB}  + m\overrightarrow {OC} \) đặt \(1 - l - m = x,l = y,m = z\) thì \(\overrightarrow {OM}  = x\overrightarrow {OA}  + y\overrightarrow {OB}  + z\overrightarrow {OC} \) với \(x + y + z = 1.\)

LG b

Ngược lại, nếu có một điểm O trong không gian saao cho \(\overrightarrow {OM}  = \overrightarrow {xOA}  + \overrightarrow {yOB}  + \overrightarrow {zOC} ,\) trong đó x + y + z = 1 thì điểm M thuộc mp(ABC).

Giải chi tiết:

Giả sử \(\overrightarrow {OM}  = x\overrightarrow {OA}  + y\overrightarrow {OB}  + z\overrightarrow {OC} \) với \(x + y + z = 1,\) ta có : \(\eqalign{  & \overrightarrow {OM}  = \left( {1 - y - z} \right)\overrightarrow {OA}  + y\overrightarrow {OB}  + z\overrightarrow {OC}   \cr  & hay\,\overrightarrow {OM}  - \overrightarrow {OA}  = y\overrightarrow {AB}  + z\overrightarrow {AC}   \cr  & \text{ tức là }\overrightarrow {AM}  = y\overrightarrow {AB}  + z\overrightarrow {AC}  \cr} \) Mà \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương nên M thuộc mặt phẳng (ABC)

ufa999.cc

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|