ftw bet

Câu 45 trang 123 SGK Đại số và Giải tích 11 Nâng cao

Cho dãy số (un) xác định bởi
Quảng cáo

Đề bài

Cho dãy số (un) xác định bởi

\({u_1} = 2\text{ và }{u_n} = {{{u_{n - 1}} + 1} \over 2}\) với mọi \(n ≥ 2\) Chứng minh rằng \({u_n} = {{{2^{n - 1}} + 1} \over {{2^{n - 1}}}}\)   (1) Với mọi số nguyên dương n.

Phương pháp giải - Xem chi tiết

Phương pháp quy nạp +) chỉ ra đẳng thức đúng với n = 1: \({u_1} = {{{2^{1 - 1}} + 1} \over {{2^{1 - 1}}}}\) +) Giả sử đẳng thức đúng đến n=k, chứng minh n=k+1 đẳng thức vẫn đúng.

Lời giải chi tiết

+) Với \(n = 1\), theo giả thiết ta có \({u_1} = 2 = {{{2^{1 - 1}} + 1} \over {{2^{1 - 1}}}}\). Như vậy (1) đúng khi \(n = 1\).+) Giả sử (1) đúng đến \(n = k,\; k \in\mathbb N^*\) tức là: \(u_k={{{2^{k - 1}} + 1} \over {{2^{k - 1}}}}\) Ta chứng minh (1) đúng với \(n=k+1\) \({u_{k + 1}} = {{{u_k} + 1} \over 2} = {{{{{2^{k - 1}} + 1} \over {{2^{k - 1}}}} + 1} \over 2} \)\( = \frac{{\frac{{{2^{k - 1}} + 1 + {2^{k - 1}}}}{{{2^{k - 1}}}}}}{2} = \frac{{{{2.2}^{k - 1}} + 1}}{{{{2.2}^{k - 1}}}}= {{{2^k} + 1} \over {{2^k}}}\)Vậy (1) đúng với mọi \(n \in\mathbb N^*\)

 ufa999.cc

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|