ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Câu 32 trang 42 SGK Đại số và Giải tích 11 Nâng cao

Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi biểu thức sau :

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi biểu thức sau :

LG a

\(a\sin x + b\cos x\) (a và b là hằng số, \(a^2+ b^2≠ 0\))

Lời giải chi tiết:

Ta có:

\(\eqalign{
& a\sin x + b\cos x \cr&= \sqrt {{a^2} + {b^2}} \left( {{a \over {\sqrt {{a^2} + {b^2}} }}\sin x + {b \over {\sqrt {{a^2} + {b^2}} }}\cos x} \right) \cr 
& = \sqrt {{a^2} + {b^2}} \left( {\sin x\cos \alpha + \sin \alpha \cos x} \right) \cr 
🐷& = \sqrt {{a^2} + {b^2}} \sin \left( {x + \alpha } \right) \cr } \)

trong đó \(\left\{ \begin{array}{l}
\cos \alpha = \frac{a}{{\sqrt {{a^2} + {b^2}} }}\\
\sin \alpha = \frac{b}{{\sqrt {{a^2} + {b^2}} }}
\end{array} \right.\)

Vì \( - 1 \le \sin \left( {x + \alpha } \right) \le 1\) nên: \( - \sqrt {{a^2} + {b^2}}  \le \sqrt {{a^2} + {b^2}} \sin \left( {x + \alpha } \right) \le \sqrt {{a^2} + {b^2}} \) Do đó, giá trị lớn nhất và giá trị nhỏ nhất của \(a\sin x + b\cos x\) lần lượt  là : \(\sqrt {{a^2} + {b^2}} \,\text{ và }\, - \sqrt {{a^2} + {b^2}} \)

LG b

\({\sin ^2}x + \sin x\cos x + 3{\cos ^2}x;\)

Lời giải chi tiết:

Ta có :

\(\eqalign{
& y={\sin ^2}x + \sin x\cos x + 3{\cos ^2}x \cr&= {{1 - \cos 2x} \over 2} +{1 \over 2}\sin 2x + 3.{{1 + \cos 2x} \over 2} \cr 
ℱ& = \frac{1}{2} - \frac{{\cos 2x}}{2} + \frac{1}{2}\sin 2x + \frac{3}{2} + \frac{{3\cos 2x}}{2}\cr&= {1 \over 2}\sin 2x + \cos 2x + 2 \cr } \)

Ta có:

\(\begin{array}{l}
{\left( {\frac{1}{2}\sin 2x + \cos 2x} \right)^2}\\
\le \left( {{{\left( {\frac{1}{2}} \right)}^2} + {1^2}} \right)\left( {{{\sin }^2}2x + {{\cos }^2}x} \right)\\
= \left( {\frac{1}{4} + 1} \right).1 = \frac{5}{4}\\
\Rightarrow {\left( {\frac{1}{2}\sin 2x + \cos 2x} \right)^2} \le \frac{5}{4}\\
\Rightarrow - \frac{{\sqrt 5 }}{2} \le \frac{1}{2}\sin 2x + \cos 2x \le \frac{{\sqrt 5 }}{2}
\end{array}\)

\(\begin{array}{l}
\Rightarrow - \frac{{\sqrt 5 }}{2} + 2 \le \frac{1}{2}\sin 2x + \cos 2x + 2 \le \frac{{\sqrt 5 }}{2} + 2\\
\Rightarrow - \frac{{\sqrt 5 }}{2} + 2 \le y \le \frac{{\sqrt 5 }}{2} + 2
\end{array}\)

Do đó giá trị lớn nhất và giá trị nhỏ nhất của \({\sin ^2}x + \sin x\cos x + 3{\cos ^2}x\) lần lượt là :   \({{\sqrt 5 } \over 2} + 2\,\text{ và }\, - {{\sqrt 5 } \over 2} + 2\)

LG c

\(A{\sin ^2}x + B\sin x\cos x + C{\cos ^2}x\) (A, B và C là hằng số).

Lời giải chi tiết:

Ta có:

\(\eqalign{
& A{\sin ^2}x + B\sin x\cos x + C{\cos ^2}x \cr 
& = A.{{1 - \cos 2x} \over 2} + {B \over 2}.\sin 2x + C.{{1 + \cos 2x} \over 2} \cr 
& = {B \over 2}.\sin 2x + {{C - A} \over 2}\cos 2x + {{C + A} \over 2} \cr&= a\sin 2x + b\cos 2x + c \cr 
💫& \text{ trong đó}\,\,a = {B \over 2},\,b = {{C - A} \over 2},\,c = {{C + A} \over 2} \cr} \)

Ta có:

\(\begin{array}{l}
{\left( {a\sin 2x + b\cos 2x} \right)^2}\\
\le \left( {{a^2} + {b^2}} \right)\left( {{{\sin }^2}2x + {{\cos }^2}2x} \right)\\
= \left( {{a^2} + {b^2}} \right).1 = {a^2} + {b^2}\\
\Rightarrow {\left( {a\sin 2x + b\cos 2x} \right)^2} \le {a^2} + {b^2}\\
\Rightarrow - \sqrt {{a^2} + {b^2}} \le a\sin 2x + b\cos 2x \le \sqrt {{a^2} + {b^2}} \\
\Rightarrow - \sqrt {{a^2} + {b^2}} + c \le a\sin 2x + b\cos 2x + c \le \sqrt {{a^2} + {b^2}} + c
\end{array}\)

Vậy \(A{\sin ^2}x + B\sin x\cos x + C{\cos ^2}x\) đạt giá trị lớn nhất là : \(\sqrt {{a^2} + {b^2}} + c\) \( = \sqrt {{{\left( {\frac{B}{2}} \right)}^2} + {{\left( {\frac{{C - A}}{2}} \right)}^2}}  + \frac{{C + A}}{2}\) \( = \sqrt {{{{B^2} + {{\left( {C - A} \right)}^2}} \over 4}} + {{C + A} \over 2} \) \(= {1 \over 2}\sqrt {{B^2} + \left( {C - A} \right)^2} + {{C + A} \over 2}\) và giá trị nhỏ nhất là \(-\sqrt {{a^2} + {b^2}} + c\) \( = -\sqrt {{{\left( {\frac{B}{2}} \right)}^2} + {{\left( {\frac{{C - A}}{2}} \right)}^2}}  + \frac{{C + A}}{2}\) \( =- \sqrt {{{{B^2} + {{\left( {C - A} \right)}^2}} \over 4}} + {{C + A} \over 2} \) \( = - {1 \over 2}\sqrt {{B^2} + {{\left( {C - A} \right)}^2}} + {{C + A} \over 2}.\)

 ufa999.cc

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|✅{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🐟{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|💯{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|ꦕ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|💝{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|ᩚᩚᩚᩚᩚᩚ⁤⁤⁤⁤ᩚ⁤⁤⁤⁤ᩚ⁤⁤⁤⁤ᩚ𒀱ᩚᩚᩚ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}| 🔯{tải app ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số}|ౠ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press 229}|{đá gà trực tiếp ở thomo campuchia}|{trực tiep thomo}|{đa ga thomo hôm nay}|ღ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số yet site}|{ae912}|{chẵn là tài hay xỉu}|♔{ae nhà cái ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số}|{venus casino}|